Section: 3.1
System/360 SIMULA Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

PART 3 PROGRAM STRUCTURE AND SYSTEM FEATURES

1 PROGRAM STRUCTURE

Without the CLASS concept, the run time structure of a
SIMULA program is essentially that of a stack of blocks
with the last created block "active". Given the program

skeleton

BEGIN REAL X;

Ll: S1;
BEGIN BOOLEAN B,
S2;
BEGIN TEXT X;
L3: S3;
END;
L2: Sl
END;
S5
END

(where the S's denote statement sequences) then the structures

at run time are

1. during execution of S1 or S5
REAL X PSC denotes the
PSC ——= L1: S1 current statement
<INNER BLOCK>
S5

Only one variable REAL X exists.

System/360

SIMULA

USERS GUIDE

Section: 3.1

Page: 2
Level: 0
Date: 5/4-1971

Originator: gB

2., during execution of S2 (or Su)

-

REAL X

—1

Ll1: S1
<INNER BLOCK>
S5

» -

BOOLEAN B

PSC —>

S2
<INNER BLOCK>
L2: Sk

Two variables REAL X and BOOLEAN B exist.

3. during execution of S3

' REAL X

L1: S1
<INNER BLOCK>
S5

—

P
Lo

BOOLEAN B

S2
<INNER BLOCK>
L2: Su '

PSC —>

TEXT X

L3: S3

STACK OF
"ATTACHED"
BLOCKS

Section: 3.1

System/360 SIMULA Page: 3
: Level: 0]
USERS -GUIDE Date: 5/4-1971

Originator:gp

Three variables exist REAL X, BOOLEAN B, TEXT X but

only two are accessible by actions in the active bloék,
for the REAL X of the outermost block has become ih-
accessible due to an identifier clash with TEXT X of the

innermost block.

Note that besides exiting from a block via its final END,
it is also possible to exit via a GOTO-statement. If the

statement sequence S3 includes the statement
GOTO L2

then on execution of that statement, the innermost block

is deleted (the variable TEXT X will no longer exist).

If the statement sequence S3 includes the statement
GOTO L1

then both the inner blocks will be deleted when that
statement is executed and both BOOLEAN B and TEXT X

will no longer exist.

System/360

SIMULA

USERS GUIDE

Section: 3.1

Page: 4
Level: 0
Date: 5/4-1971

Originator: GB

The CLASS concept initially gives the opportunity for data

structures to exist in parallel.

BEGIN CLASS Aj.eeveeenens
REF(A)U,V;

U

L:
END

:= NEW A;
BEGIN CLASS Bjeeeveeanss

REF(B)X;
REF(A)W;

v
X

t— W := NEW A
:= NEW Bj;

" o o v e e e

TNNER BLOCK#i##

END ###PROGRAM##*#%

The program

5

)

has the representation below at the label L.

0B:

IB:

outer block

inner block

5 “x

&

CLASS A
REF(A) U
REF(A) V - &

<INNER BLOCK>Y

N

*

1B

CLASS B
REF(A) W &

REF(B) X o

L:
T e e s e e

Section: 3.1

System/360 S I M U L A Page: 5
: Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

When the inner block is deleted, the second A object is still
available as it is referenced by V. On the other hand, the B
object must be deleted as its declaration and therefore all

its references do not exist.

At this level, the actions of each object are executed until
exhaustion and then the objéct is left as an attribute structure
in the terminated state. But there is a broad class of problems
which cannot be modelled by this mechanism, e.g. when the actions
are executed in phases corresponding to the actual concept repre-
sented being active or passive. For example, a customer in a

shop goes through the stages of queuing (passive) and buying
(active), players in a game of cards play, and then are passive
until their turn comes again. We could picture a customer object,
C, by:

C
enter shop
} active
enter queue 1
passive
served
} active
enter gueue 2
passive
served
active
enter queue 3
leave shop

Section: 3.1
System/36 Page:
ystem/360 SIMULA eser f
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: gR

When C is passive its actions may be made active again By a

call RESUME(C). The actions of C are resumed from where they

were left off last. To mark off'this:program point objects

can be made into program components supplied with a LOCAL SEQUENCE
CONTROL (LSC) which marks the éurrent stage of execution of their

actions.

A very simple example is that of two players playing a game.

Their actions may be loosely described by

L: play;
RESUME (opponent) ;
GOTO L

When the first player is generated, we do not wish to execute
these actions as the opponent is not yet generated. So we

have to return control to the main block and return a reference
to this player, and then create the second player. A second
system PROCEDURE DETACH serves this purpose. On meeting
DETACH, the object becomes a system component with an LSC
referencing the next statement, control is returned to its

object generator and with it a reference to the object.

Section: 3.1

’ Level: 0
USERS GUIDE : Date: 5/4-1971

Originator:GB

The outline of a simple program for a two man game is: .

BEGIN CLASS PLAYER;
BEGIN REF(PLAYER) OPPONENT;
DETACH ;
L: play;.
- RESUME(OPPONENT) ;
GOTO L

END; ‘

REF(PLAYER)P1,P2;

P1 :- NEW PLAYER;

P2 :- NEW PLAYER;

P1.0PPONENT :~ P2; P2.0PPONENT :~ P1;
RESUME(P1) ;

END

System/360

SIMULA

USERS GUIDE

Section: 3.1
Page: 8

Level: 0

Date: 5/4-1971

Originator: GB

A snapshot at the point where RESUME(P1l) has just been

executed is:

MB |
PLAYER CLASS
Pl REF(PLAYER) &~
P2 REF(PLAYER)\\
RESUME(P1)
LSC Ceeeeeaes
e MB
OPPONENT REF(PLAYER)e
DETACH LSC
LSC, Psqu: play
RESUME (OPPONENT)
GOTO L

\

MB

OPPONENT REF(PLAYER)—

DETACH

play
RESUME(OPPONENT)
GOTO L

The PSC coincides with the LSC of the currently active com-

ponent.

System/360

SIMULA

USERS GUIDE

Section: 3.1

Page: 9
Level: 0
Date: 5/4-1971

Originator: GB

LSC

After Pl has played, P2 is resumed and the new snapshot is:

LsC RESUME(P1)
| MB
L: play LSC,PSC
RESUME(OPPONENT)
GOTO L

Note that there are three components here with LSC's:

players and the program block.

| MB
L: play
RESUME(OPPONENT)
GOTO L
the two

The current state of the two

objects is "detached" - when they are program components with

LSC's.

and become "terminated".

block and continues from its LSC.

be resumed.

One question remains:

When their actions are exhausted, they lose their LSC's
Control returns to the main program

Only a "detached" object may

how to transfer control back to the

(unreferenced) main program block without terminating an object.
This is achieved by a further call on DETACH.

Section: 3.1

Sys 36 : P :
ystem/360 SITMUL A . Lagel 10
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

In addition to sequencing PROCEDURES, "DETACH" and "RESUME",
there is the PROCEDURE CALL which has one reference parameter

which must be a reference to a detached object.

The execution of CALL(Y) from within a block X, will "attach"

‘the detached object Y to X and_coﬁtinue execution of the actions

of Y.

The detailed description of program sequencing given in the
"67 Common Base Language" is not repeated here. Further en-

quiries are directed to that document 8§9.

Section: 3.2
System/360 SIMULA Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

2 THE SYSTEM CLASS SIMSET

List processing concepts and list manipulating procedures are
declared in the system classes within the CLASS SIMSET. SIMSET
can be used as a block prefix or as a prefix to another CLASS

at one and only one block level in a program.

In SIMSET are provided the concepts for manipulating two-way
lists called "sets". Besides the set members which carry infor-
mation and are prefixed by LINK, a set also has a HEAD which
has attributes giving global information about the set (e.g.

how many members it has).

A set is organised on the basis of references SUC and PRED
which are common to LINK and HEAD. '

H sucC SET HEAD
PRED o
S SUC SUC > SUC SET MEMBERS
. PREFIXED BY
PRED K PREI)F PRED LINK

To protect the user from certain kinds of error, SUC and PRED
are made REF(LINK) PROCEDURES and so may not be assigned to.

The part common to both HEAD and LINK is declared separately
in CLASS LINKAGE which is then used as a prefix to HEAD and LINK.

Section: 3.2
S 360 P : 2
ystem/36 SITMULA Lagel ;
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

A skeleton of the CLASS SIMSET is thus

CLASS SIMSET;

BEGIN CLASS LINKAGE....:.uveeesoss
LINKAGE CLASS LINK....... 5
LINKAGE CLASS HEAD.......;

END ###SIMSET##*%

This hierarchy may be pictorially represented by:

PREV
suC
PRED
LINKAGE
\
FIRST OUT
LAST INTO
EMPTY PRECEDE
CARDINAL FOLLOW
|CLEAR
HEAD LINK

in which the procedures local to each of the classes are denoted

by their identifiers.

An outline of the individual classes is now given containing
the procedure-headings and a prose description of their actions.
Throughout the prose descriptions which are illustrated by repre-

sentative calls, we assume that the declarations

REF (HEAD)HD;
REF(LINK)LK;
REF(LINKAGE)LG;

are valid.

Section: 3.2

System/360 STMULA Page: 3
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

CLASS LINKAGE

CLASS LINKAGE;
BEGIN REF(LINK) PROCEDURE SUC;..... ;
REF(LINK) PROCEDURE PRED;....;
REF(LINKAGE) PROCEDURE PREV;.;
END ###0F LINKAGE###% ;

REF(LINK) PROCEDURE SUC;..... 5

LK.SUuC returns a reference to the succeeding
set member if LK is in a set, and LK
is not the last member of the set, other-

wise it returns NONE.

HD.SUC returns a reference to the first set

member if the set is not empty, otherwise

NONE.
REF(LINK) PROCEDURE PRED;....;
LK.PRED returns a reference to the preceding set

member if LK is in a set and LK is not the

first member of the set, otherwise NONE.

HD.PRED returns a reference to the last set

member if the set is not empty, otherwise

NONE,
REF(LINKAGE) PROCEDURE PREV;....;
LK.PREV returns NONE if LK is not in a set, a

reference to the set head if LK is first
member of a set, otherwise it returns a

reference to LK's predecessor.

Section: 3.2 j

System/360 S I M U L A Page: 4
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

HD. PREV - returns a reference to HD if HD is empty,

Note:

otherwise a reference to the last member

of the set with head HD.

by following PREV it is possible to give a reference

to the head of a set in which a LINK object is a member,
as shown in the following procedure (not local to LINKAGE,
LINK or HEAD).

REF(HEAD) PROCEDURE THESETHEADOF(LK); REF(LINK)LK;
BEGIN REF(LINKAGE)X;
IF LK =/= NONE THEN
BEGIN X :- LK.PREV;
WHILE X IN LINK DO
X :- X.PREV;
THESETHEADOF :- X;
END;
END ###THESETHEADOF# %%

Section: 3.2

System/360 SIMULA Page: 5
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

CLASS HEAD

LINKAGE CLASS HEAD;

BEGIN PROCEDURE CLEAR;..... e
REF(LINK) PROCEDURE FIRST;......;
REF(LINK) PROCEDURE LAST;.......;
BOOLEAN PROCEDURE EMPTY;........;
INTEGER PROCEDURE CARDINAL;.....;

END ##%0F HEAD##%

REF(LINK) PROCEDURE FIRST;.....;

HD.FIRST is equivalent to HD.SUC

REF(LINK) PROCEDURE LAST;..... 5

HD.LAST is equivalent to HD.PRED

BOOLEAN PROCEDURE EMPTY;.....;

HD.EMPTY returns TRUE 1f HD references a set

with no members, FALSE if HD references

a set with one or more members.

[

INTEGER PROCEDURE CARDINAL; .o
HD.CARDINAL returns how many members the set HD con-
tains (0 if HD is empty).

PROCEDURE CLEAR; ¢4 v}
HD.CLEAR removes all members from the set, making

it empty.

Section: 3.2

System/360 SIMULA Page: 6
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

CLASS LINK

LINKAGE CLASS LINK;

BEGIN PROCEDURE OUT;...cvvvnn 5
PROCEDURE INTO(H); REF(HEAD)H;...... .o 5
PROCEDURE PRECEDE(X); REF(LINKAGE)X;....;
PROCEDURE FOLLOW(X); REF(LINKAGE)X;..... 5

END ###(QF LINK###%

PROCEDURE OUT;..... 5

LK.OUT removes LK from a set and re-establishes
the SUC, PRED connections between its
previously neighbouring members. If LK
was not a set member, no action 1s taken.

PROCEDURE INTO(H); REF(HEAD)H;...... H

LX.INTO(HD) LK.OUT is called first. If HD == NONE
no action i1s taken. If HD =/= NONE, LK
goes into the set HD as the new last
member,

PROCEDURE PRECEDE(X); REF(LINKAGE)Xj;...... 5

LK.PRECEDE(LG) LK.OUT is called first. If LG == NONE or
is not in a set then no action is taken,
otherwise LK goes into the same set as LG
as the new LG.PRED (LG may reference either
a HEAD or a LINK object).

PROCEDURE FOLLOW(X); REF(LINKAGE)Xj;...... H

LK.FOLLOW(LG) as PRECEDE except that LK becomes the new

LG.S5UC

Section: 3.2

System/360 SITMULA Page: 7
' Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

The use of reference variables and the fact that an object
of any CLASS inner to CLASS LINK may be inserted in a set

give the following desirable features:

1) ordered sets can be manipulated by efficient standard pro-

cedures

2) Dboth the successor and predecessor of a LINK object are

immediately accessible
3) the set members can be objects of different classes.

Note that a LINK object can only be in one set at a time.

Section: 3.2
Syst 360 P :
ystem/36 SITMULA Lage1 8
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Example on the use of SIMSET

The example is concerned with the dealing of a hand of cards,
13 cards each in rotation, to a table of four players. It shows
how the concepts HEAD and LINK of SIMSET may be used as a plat-

form upon which to build more general concepts.

The patterns to be described are

CLASS CARD
CLASS DECK
CLASS HAND

Initially the CARD objects are created and inserted into a DECK
in the order of their generation (which is non-random). Skeletons

of these two CLASSES are

LINK CLASS CARD(COLOUR,RANK); INTEGER COLOUR, RANKj

BEGIN wovvrennnnnnnnnens e e ... END;
HEAD CLASS DECK;
BEGIN END;

Immediately prior to the dealing, the situation may be repre-

sented by
CARDDECK rgr) HEAD
/ DECK
CARD LINK LINK K - LINK
OBJECTS COLOUR 1} |COLOUR 2 COLOUR U4

RANK 1 RANK 1 RANK 13

Section: 3.2

System/360 S‘I MULA Page: 9
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

A deal consists of removing the 52 cards in random order from
CARDDECK and inserting them into the HANDS in rotation.

It is convenient to describe each HAND by

CLASS HAND;
BEGIN REF(HEAD) SUIT(1:4);
generate four heads representing the four

possible suits;
END ##%HAND¥*#*¥*

After generation and the dealing of the CARDS, a HAND object

can be visualised by:

surtcopPL OO 4 CLUBS
suzT() B [0 3 DIAMONDS

sUIT(3) | [:] 2 HEARTS

surreH) P[]0 4 SPADES

Now the CARDS may be ranked in order of their attribute RANK

and in the appropriate SUIT. The actions of the program are:

generate the deck;
deal the hands;

Section: 3.2

Level: 0
USERS GUIDE Date: 5/4-1971

Originator: (B

generate the deck;

These actions may be made local to CLASS DECK, which now has
the outline

HEAD CLASS DECK;
BEGIN INTEGER I,J;
FOR J := 1 through 13 DO
FOR I := 1 through 4 DO
NEW CARD(I,J).INTO(THIS HEAD)
END ##%¥DECK¥###*

On generation of a DECK object, the representation of the

CARDS is automatically generated.

deal the hands;

This part consists of randomly selecting the Nth card and
placing it in the appropriate SUIT of the current PLAYER. Let
J denote the index of the current PLAYER (J = 1,2,3 or 4), then

the actions are:

s
O
v}
H
n

52 STEP -1 UNTIL 1 DO

BEGIN C :- the randomly selected card;
IF J = 4 THEN J := 1 ELSE J := J + 1;
COMMENT ###SELECT INDEX OF CURRENT PLAYER###
place C in PLAYER(J)

END;

There remains the tasks of writing the selection procedure, and
the procedure to place the CARD C in the current HAND. These are

done by PROCEDURE SELECT local to CLASS DECK and PROCEDURE PLACE
local to CLASS HAND.,

Section: 3.2

P :
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: gB

The final program is:

SIMSET
BEGIN HEAD CLASS DECK;
BEGIN REF(CARD) PROCEDURE SELECT(N); INTEGER N;
BEGIN REF(CARD)X; INTEGER I;

X :- FIRST QUA CARD;
FOR I := 2 STEP 1 UNTIL N DO
X = X.SUC;

SELECT :- X3
END ###SELECT###
INTEGER I,J;
FOR I := 1 STEP 1 UNTIL 13 DO
FOR J := 1 STEP 1 UNTIL 4 DO
NEW CARD(J,I).INTO(THIS HEAD);
END ###DECK##% ;

LINK CLASS CARD(COLOUR,RANK); INTEGER COLOUR, RANK;;
COMMENT ###COLOUR 1 REPRESENTS CLUBS

2 REPRESENTS DIAMONDS

3 REPRESENTS HEARTS

4 REPRESENTS SPADES

RANK = 1 REPRESENTS ACE
2-10 OBVIOUS
11 JACK
12 QUEEN

13 KING##%

Section: 3,7

System/360 S I M U L A Page: 12
Level: 0
USERS GUIDE Date: 5/4~1971

Originator: gp

CLASS HAND;
BEGIN PROCEDURE PLACE(C); REF(CARD)C;
BEGIN REF(HEAD)S; REF(CARD)X;
S :- SUIT(C.COLOUR);
IF -1 S.EMPTY THEN
BEGIN X :- S.FIRST QUA CARD;
WHILE X =/= NONE DO
BEGIN IF X.RANK > C.RANK THEN
BEGIN C.PRECEDE(X);
GOTO Lj
END;
END;
END;
COMMENT ###WE ENTER HERE IF S IS EMPTY OR
IF C.RANK IS THE HIGHEST MET
SO FAR###% |
C.INTO(S);
L: END ###PLACE##% ;

REF(HEAD) ARRAY SUIT(1:4);

SUIT(1) :- NEW HEAD;
SUIT(2) :- NEW HEAD;
SUIT(3) :- NEW HEAD;
SUIT(4) :- NEW HEAD;

END ##%HAND##% ;

System/360 SIMULA

USERS GUIDE

Section: 3,2

Page: 13
Level: 0
Date: 5/4-1971

Originator:gp

REF(CARD)C;

REF(DECK) CARDDECK;

INTEGER I,J,U;

REF (HAND) ARRAY PLAYER(1:4);

U := ININT; COMMENT ###INPUT THE RANDOM STREAM BASE###%

CARDDECK :- NEW DECK;

COMMENT ###GENERATES THE WHOLE PACK OF 52 CARDS IN

NON-RANDOM ORDER### ;

FOR I := 1 STEP 1 UNTIL 4 DO
PLAYER(I) :- NEW HAND;
FOR I := 52 STEP -1 UNTIL 1 DO

BEGIN C :- CARDDECK.SELECT(RANDINT(1,I,U));

IF J = 4 THEN J := 1 ELSE J :=
PLAYER(J) .PLACE(C);
END;
END ###PROGRAM# %%

J + 13

Section: 3.3
S 360 P : 1
ystem/36 STMULA Lagel i
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

3 THE SYSTEM CLASS SIMULATION

The CLASS SIMULATION is prefixed by SIMSET and provides, in

addition to SIMSET's set concepts, the notions of a time axis
and processes (entities which interact over a period of time).
The
two
the

time axis consists of a set of event notices which have

attributes, a reference to the PROCESS they represent and
time of its next scheduled event. The event notices are
ranked according to the values of the time variable (EVTIME).

We can picture the time axis with four scheduled events by:

TIME = 5.0
EVENT EVTIME 5.0 EVTIME 10.C EVTIME 11.0 EVTIME 11.0
NOTICES PROC » PROC » PROC ’ PROC ?
—~ | —~ | il ~ |
PROCESS L: DETACH; (; <;
OBJECTS GOTO Lj
CURRENT MAIN

The first PROCESS represented in the time axis is always refe-

renced by CURRENT and the system time is the value of its scheduled

next event (here 5.0).

An object of any class prefixed by PROCESS

may take an active and passive part in a simulation.

The organ-

isation is so framed that the PSC lies within CURRENT and its

, Section: 3.3
System/360 SIMULA Page: 2
' Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

actions are executed. When the active phase is over, that PROCESS
may be rescheduléd for a later active phase (for example, by
REACTIVATE or HOLD) or removed from the timing tree (by PASSIVATE
or WAIT). It is apparent that RESUME is too primitive for this
purpose as it involves rescheduling or removing EVENT NOTICES as

well as switching the PSC from one PROCESS object to another.

However RESUME and DETACH do form the basis for the scheduling
procedures. To prevent the user from destroying system security,
event notices may not be explicitly referenced by the user - he
must use the system procedures for scheduling or rescheduling.

In addition, it is strongly recommended that explicit use of
"DETACH", "RESUME" and "ATTACH" be avoided within a SIMULATION
block.

There is one special PROCESS object which plays a key role in

any SIMULATION - one referenced by MAIN. Whenever MAIN becomes
CURRENT, it causes the actions of the SIMULATION block itself to
be continued. The corrésponding event notice can then be re-
scheduled (typically by a call on HOLD) and then the action swit-
ches from the SIMULATION block to the new CURRENT. Thus the
SIMULATION block is itself treated as a program component during
the SIMULATION.

Section: 3.3

System/360 SIMULA Page:
Level:
USERS GUIDE Date:

5/4-1971

Originator: GB

The class outline 1is

SIMSET CLASS SIMULATION;

BEGIN LINK CLASS PROCESS.....;
REF(PROCESS) PROCEDURE CURRENT;.....;
REAL PROCEDURE TIME;.....;
COMMENT ###SCHEDULING PROCEDURES### ;
PROCEDURE HOLD;....... :
PROCEDURE PASSIVATE;. .;
PROCEDURE WAIT;....... ;
PROCEDURE CANCEL;. ;
PROCEDURE ACTIVATE;...;
PROCEDURE ACCUMj;. ;.

REF("the main program")MAIN;

COMMENT ###HERE FOLLOW ACTIONS WHICH SET UP THE

TIME AXIS AT TIME ZERO##%
END ###%STIMULAT ION##*%

Section: 3.3

System/360 SITMULA Page: b
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

We now give a prose discussion of the attributes of CLASS
SIMULATION:

CLASS PROCESS

LINK CLASS PROCESS;

BEGIN BOOLEAN PROCEDURE IDLE;..uevesnn.s
BOOLEAN PROCEDURE TERMINATED;....;
REAL PROCEDURE EVTIME;. ..vvseun..;
REF(PROCESS) PROCEDURE NEXTEV;...;
DETACH;
INNER;
PASSIVATE;

END ##%PROCESS##%%

An object of a class inner to CLASS PROCESS is a PROCESS

object. A PROCESS object has the properties of CLASS LINK and
can be manipulated by sequencing statements. Sequencing state-
ments are used to insert or delete a PROCESS object from the
time axis. The state of a PROCESS object after generation is
"detached" and its LSC is positioned to the first statement of
the user defined operations rule. When the actions of the user
defined subclass are exhausted, the unfinished actions of the
'PROCESS level are continued (following the INNER). These remove
the object from the time axis (PASSIVATE) and its state becomes

"terminated".

Section: 3.3

System/360 S I M U l_ A Pag/e: 5
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

If a PROCESS object is not represented in the time axis, then it
is terminated or passive (its actions are not yet exhausted) and
the BOOLEAN PROCEDURE IDLE returns TRUE. All PROCESS objects re-
presented in the time axis are said to be suspended except for
the first (CURRENT) which is said to be active.

A call on EVTIME for a suspended or active PROCESS object returns
the scheduled time of its next event. If the object is passive

or terminated, then a call on EVTIME results in a run time error.

PRQCESS result of nrocadurs call
obiect
state IDLE TERMINATED EVTIME
active FALSE FALSE time of current event
suspended |FALSE FALSE time of next event
‘| passive’ TRUE FALSE run time error
terminated |TRUE TRUE run time error
REF(PROCESS) PROCEDURE CURRENT;......3

returns a reference to the currently
active PROCESS object. There is one
special PROCESS object in the system
referenced by MAIN. Every time MAIN
becomes CURRENT it causes the actions
of the SIMULATION - block to be resumed.

REAL PROCEDURE TIME;.....;
always returns the current value of the

system time.

Section: 3,3

System/360 STMULA Page: 6
Level: 0
USERS GUIDE Date: 5/4-1971
’ Originator: gB
PROCEDURE HOLD(T)s; REAL T;...... 5

PROCEDURE PASSIVATE;

HOLD(N) reschedules CURRENT so that its
next active phase will occur at TIME + N.
If the value of the actual parameter N is
negative, the call is equivalent to HOLD(O0).
After the rescheduling, the actions of
CURRENT are resumed.

Notice that HOLD(T) can be called from the
user defined SIMULATION block in which case
MAIN will be rescheduled - i.e. the actions
of the program block are suspended for N

time units.

removes CURRENT from the time axis and
resumes the actions of the new CURRENT.
A run time error will occur if the time

axis 1s now empty.

PROCEDURE WAIT(S); REF(HEAD)S;...... 5

PROCEDURE WAIT(S); REF(HEAD)S;
BEGIN CURRENT.INTO(S);

PASSIVATE

END ##%xWAT T

WAIT includes the currently active PROCESS
object (this could be MAIN) into a refe-
renced set, and then calls PASSIVATE.

Section: 3.3
System/360 SITMULA Page: 7
Level: 0

USERS GUIDE Date: 5/4-1971
’ Originator: GB

11

PROCEDURE CANCEL(X); REF(PROCESS)Xj3...sess
CANCEL(P) where P is a reference to a
PROCESS object will delete the corresponding
event notice if any. If P is currently
active or suspended, it thus becomes passive.
If P is a reference to a passive or ter-
minated PROCESS object or NONE, CANCEL(P)
has no effect. Thus CANCEL(CURRENT) is
equivalent to PASSIVATE.

PROCEDURE ACTIVATE

For user convenience, calls on the procedure ACTIVATE are

written in terms of the corresponding activation-statements.

activation-statement

ACTIVATE {AT|DELAY time}PRIOR

PROCESS-expressionl

REACTIVATE {BEFORE|AFTER}PROCESS~

expression?

Let X be the value of PROCESS-expressionl. If the activator
ACTIVATE is used, then the activation-statement will have no
effect (other than evaluating X) unless X is passive. If the
activator REACTIVATE is used, then X may be active, suspended,
or passive (in which latter case, the activation-statement acts
as an ACTIVATE statement).

The type of scheduling is determined by the scheduling clause.

Section:

3.3
System/360 SIMULA Page: 8
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: gB

Direct activation

ACTIVATE X }
REACTIVATE X

X becomes the new CURRENT and the system time is unchanged.

The formerly active PROCESS object from where the call was made

becomes suspended.

Timing clause

{ ACTIVATE AT
X T [PRIOR]
REACTIVATE DELAY

The timing clause AT specifies the system time of the scheduled

active phase. The clause
DELAY T
is equivalent to

AT current-system-time + T

The corresponding EVENT NOTICE is inserted according to the
specified time, normally after any EVENT NOTICE with the same
system time; the symbol PRIOR may be used to specify insertion
in front of any EVENT NOTICE with the same system time.

Default actions

"AT T", when T < the current-system-time, is equivalent to

"AT current-system-time".

DELAY T when T < 0 is equivalent to DELAY 0.

Section: 3.3

System/360 SIMULA Page: 9
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Relative activation

ACTIVATE REFORE

REACTIVATE AFTER

If Y is a reference to an active or suspended PROCESS object,
then the clause BEFORE Y or AFTER Y is used to insert an event
notice for X before or after that of Y and at the same system

time.

Default actions

If Y is neither active nor suspended, then the activation-

statement is equivalent to

CANCEL(X).

If X == Y, then the activation-statement is equivalent to

CANCEL(X).

Section: 3.3

System/360 SIMULA Page: 10
: Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

PROCEDURE ACCUM

PROCEDURE ACCUM(A,B,C,D); NAME A,B,C; REAL A,B,C,D;

BEGIN A := A + C«(TIME-B);
B := TIME;
C (= C + D

END ###ACCUM#* %%

ACCUM(P,Q,R,S) is used to accumulate the "system time integral
of the variable R. The accumulation takes place in P. The
integral is interpreted as a step function of the system time
with Q holding the system time when P was last updated. The

value of S is the current increment of the step function.

before
A
1T
7
’/// R
after a call on ACCUM(P,Q,R,S) T%ME
we have

/N

?R

N
NN

P contains result so far (shaded area).

'

-..}

H.O

Section: 3.3

System/360 S I M U L A Page: 11
‘ Level: 0}
USERS GUIDE Date: 5/4-1971

Originator: GB

Example on the use of SIMULATION

The program is a description of a simple epidemic model.
A contagious, non-lethal disease is spreading through a
POPULATION of a fixed size. Certain countermeasures are
taken by a public health organisation. Each individual
infection has a given INCUBATION period, during which the
subject is noncontagious and has no SYMPTOMS, followed by

a contagious period of a given LENGTH.
COURSE OF INFECTION IN DAYS

| INCUBATION LENGTH thereafter |
NON-CONTAGIOUS CONTAGIOUS IMMUNE

Each DAY of the contagious period the subject may seek treat-
ment from the public health organisation and get cured. The
probability of his seeking treatment is stored in REAL ARRAY
PROBTREAT (1:LENGTH). Each person has an expected number of
CONTACTS per day. At one such contact the probability of in-

fecting a previously uninfected person is PRINF.

Once cured a person becomes immune. If untreated, the infec-

tion ceases after the given period and the person becomes immune.

SICKP (sick persons) appear as PROCESSes in the system. When
CURED, or when the disease has run its course, they leave the
system. The very first infection is generated by the main
program (user block). A person infected by another person is
included as a member in a set belonging to the infector (his

environment (ENV)). A person can be a member of at most one set.

Section: 3.3

System/360 SITMULA Page: 12
Level: 0
USERS GUIDE Date: 5/4~1971

Originator: GB

As people are cured, they are removed from these sets which
gradually split up into smaller sets. The latter grow indepen-
dently, disintegrate further, and so on. As the number of
UNINFECTED people decreasés, the growth of the contagion slows

down until it finally dies out.

The public countermeasures are represented by TREATMENTs which
are also PROCESSes. A patient is removed from the environment
set to which he belongs, if any. If he has visible symptoms,
he is cured. In addition his environment is searched and each
member is subjected to a full treatment which may cause other
environments to be searched etc. A patient displaying no symp-
toms is given a mass treatment which has a probability PROBMASS
of success. His environment is not searched. In the present
model, treatments act instantaneously. The simulation ends
after SIMPERIOD units of time.

An outline of the problem description is

SIMULATION
BEGIN PROCESS CLASS SICKP;
BEGIN REF(HEAD)ENV;
PROCEDURE INFECT;
END ###SICK PERSON###
PROCESS CLASS TREATMENT(PATIENT);
REF(SICKP)PATIENT;
BEGIN +.vvveeeeenceenenessss END;

END ###SIMULATION BLOCK###%

System/360

Section: 3.3

. 13
SIMULA Page:
Level: 0
USERS GUIDE - Date: 5/4-1971

Originator: GB

We may now outline the class actions

PROCESS CLASS SICKP;

BEGIN

PROCEDURE INFECT;...... 5
INTEGER DAY; BOOLEAN SYMPTOMS;
REF(HEAD)ENV;

COMMENT ##*#ywait incubation days for symptoms to
appear###

HOLD(incubation period);

COMMENT ###now the symptoms are apparent. If
"treatment today" is TRUE then a cure
is sought which also implies that the
environment of this SICK PERSON is
examined. Also a number of contacts
are infected¥*#*#

SYMPTOMS := TRUE;

FOR DAY := 1 through LENGTH DO

BEGIN

© IF treatment today THEN ACTIVATE NEW TREATMENT;
INFECT(todays contacts);
HOLD(1);
END;

END ###STICK PERSON###

System/360

Section: 3.3

S I M U L A Page:\ 14
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

PROCEDURE INFECT(N); INTEGER N;

BEGIN INTEGER I;

COMMENT #*##N gives the number of contacts who can

be infected. N random drawings are made
to see if the N contacts are to be in-
fected. If so a NEW SICKP is generated

~and included in this SICKPs ENV and

FOR I := 1
IF Ith
BEGIN

END;
END ##% INFECT##%

activated###% ;
through N DO
contact is infected THEN

NEW SICKP.INTO(ENV);

ACTIVATE ENV.LAST;

Section: 3.3

| Level: O
USERS GUIDE Date: 5/4-1971

Originator: GB

PROCESS CLASS TREATMENT (PATIENT); REF(SICKP)PATIENT;
BEGIN REF(SICKP)X;
INSPECT PATIENT WHEN SICKP DO
BEGIN OUT;
IF SYMPTOMS THEN
BEGIN CANCEL(PATIENT);
FOR X :- ENV.FIRST WHILE X =/= NONE DO
ACTIVATE NEW TREATMENT(X);
END ELSE IF probmass successful
THEN CANCEL(PATIENT)
END;
END ###TREATMENT#*##

Explanation:

A treatment tests the SYMPTOMS attribute of its parameter PATIENT.
If TRUE then the instantaneous successful treatment is given.

The patient is removed from the set he is in (OUT) and becomes
passive for the rest of the simulation. In addition his environ-
ment is searched and a new treatment is activated for each member.
If there are no symptoms, the patient is given a cheap pill which
has a probability of being successful.. If successful the patient
is instantaneously cured and takes no further part in the simu-

lation, but his environment is not searched.

Section: 3.3

System/360 STMULA Page: 16
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

A complete description of the program now follows:

BEGIN INTEGER POPULATION, LENGTH, CONTACTS, INCUBATION,
Ul, U2, U3, Ulb;
REAL PRINF, PROBMASS, SIMPERIOD;
COMMENT ###THE RANDOM STREAM NUMBERS ARE READ IN###% ;

Ul := ININT; U2 := ININT;
U3 := ININT; Ut := ININT;

POPULATION := ININT;

INCUBATION := ININT; LENGTH := ININT;
CONTACTS := ININT;

SIMPERIOD := INREAL;

PRINF := INREAL; PROBMASS := INREAL;

SIMULATION BEGIN REAL ARRAY PROBTREAT(1:LENGTH);
PROCESS CLASS SICKP;
BEGIN INTEGER DAY;
BOOLEAN SYMPTOMS;
REF(HEAD)ENV;
PROCEDURE INFECT(N); INTEGER Nj
BEGIN TINTEGER I;
FOR J := 1 STEP 1 UNTIL N DO
IF DRAW(PRINF#UNINFECTED/
POPULATION,U3) THEN
BEGIN NEW SICKP.INTO(ENV);
ACTIVATE ENV.LAST;
END;
END ###INFECT##%

Section: 3.3

System/360 .
ystem STMULA Page: 17
Level: 0

USERS GUIDE Date: 5/4-1971

Originator: GB

IF UNINFECTED > 0 THEN
UNINFECTED := UNINFECTED-1;
ENV :- NEW HEAD;

COMMENT ###NO SYMPTOMS APPEAR UNTIL
AFTER INCUBATION DAYS### ;

HOLD(INCUBATION) ;

COMMENT ###NOW SYMPTOMS APPEAR AND THIS
SICK PERSON MAY SEEK A CURE
AND INFECT OTHERS EACH DAY##%

FOR DAY := 1 STEP 1 UNTIL LENGTH DO
BEGIN IF DRAW(PROBTREAT(DAY),Ul) THEN
ACTIVATE NEW TREATMENT (CURRENT);
INFECT(POISSON(CONTACTS,U2));
HOLD(1)
END;
END ###SICK PERSON### 3
PROCESS CLASS TREATMENT(PATIENT);
REF(SICKP)PATIENT;
BEGIN REF(SICKP)X;
INSPECT PATIENT WHEN SICKP DO
BEGIN OUT;
IF SYMPTOMS THEN
BEGIN CANCEL(PATIENT);
FOR X :- ENV.FIRST
WHILE X =/= NONE DO
ACTIVATE NEW TREATMENT(X);
END ELSE IF DRAW(PROBMASS,U4)
THEN CANCEL(PATIENT);
END;
END ###TREATMENT s

ACTIVATE NEW SfCKP;
HOLD(SIMPERIOD);
END ###SIMULATION BLOCK###
END ###PROGRAM###

Section: 3.4

System/360 S I M U L A Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: @B

4 TEXT HANDLING FACILITIES

The concept of TEXT is the key to SIMULA's input/output faci-
lities. Tor example when a card is read in, the internal repre-
sentation is held as a string of 80 CHARACTERS with a one to one
correspondence between the nth column of the card and the nth
CHARACTER in the string. Such a string is called a TEXT-value

and it is housed in a referenced TEXT-object.

T =3 THT ST LTV ALUEUL TESuI NuALT EXTLOBJECT .|

With TEXTs we have thus a combination of both reference (to the
housing object) and value (the string of CHARACTERS) properties.
TEXTs resemble objects (of classes) in that they possess attri-
butes which are accessed by the normal remote accessing (dot
notation) technique, but TEXTs and their attributes are wholly

system defined.

Whereas a CHARACTER ARRAY is oriented towards accessing single

characters at a time by direct means (subscripts), the TEXT
concept is oriented towards groupings of characters and sequen-
tially accessing these groups.

TEXT variables are declared in the usual fashion.

e.g. TEXT R,S,T

and the initial value of each of these variables is NOTEXT.

Section: 3.4

System/360 SIMULA Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

TEXT variables are capable of referencing TEXT objects which
may be created by two system defined PROCEDURES - BLANKS and
COPY:

T :- BLANKS(N)

creates a TEXT object of length N characters, each initialised
to the blank character. After creation of the object, its

reference value is assigned to T.

S := COPY("SIMULA");
R := COPY(S)

COPY will accept either a TEXT value or a TEXT reference ex-
pression as parameter, creates a TEXT object with value iden-
tical to that of the actual parameter and of the same length,
and returns a reference to it. The result of the last two state-

ments may be pictured by .

S'h——————%{l 1 | s | SIMULA

R 1 1 6 | e SIMULA

magic box

Each TEXT variable has its own "magic box" which gives infor-
mation about the start position (SP), end position (EP) and
current position (CP) of the object it currently references.
The box also contains the reference value of the object itself.

The formal pattern of these magic boxes is:

Sp cp Lp ref.valf

Section: 3.4
System/360 SIMULA Page: 3
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

A TEXT object may be referenced in subfields by use of the

procedure SUB

After T := COPY("SIMULAM™)

then S := T.SUB(5,2)

results in
T e——>1 [1] 6] ASIMULA
Se——1 [1] 2] J

S references the subfield of T beginning from character 5
and of length 2.

The characters may be accessed one at a time by calls on GETCHAR
which returns the value of the current character and increments
the CP by one.

After C := T,.GETCHAR;
D := T.GETCHAR
the snapshot 1is
T e——+1 3 6| e SIMULA
S —m+1 1 21 s 1

and the values of C and D are 'S' and 'I' respectively.

As access was made through T, only its C has been incremented
(twice). The reverse process of inserting a character value
into the current position is achieved through use of PUTCHAR,

which also increments the CP.

Section: 3.4

System/360 SITMULA Page: 4
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

After S.PUTCHAR('6');
S.PUTCHAR('7")

the snapshot is

T #——— 1 3 6 -~ SIMUG7

i
se——1 (3|2 |~ 3

Note that the value of T has been changed. The CP of S is

now out of range. A further call

S.PUTCHAR
or S.GETCHAR

will result in a run time error. To provide a check, a BOOLEAN
PROCEDURE MORE is provided which returns FALSE if the CP is out
of range and TRUE otherwise. Currently,

T.MORE = TRUE S.MORE = FALSE

Other useful system defined procedures are:

LENGTH which returns the length of the currently

referenced value

(T.LENGTH = 5
S.LENGTH = 2)

POS which returns the value of the CP
(T.POS = 3

S.POS = 3)

Section: 3.4

System/360 S I M U L A Page: 5
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

SETPOS - which resets the CP. (To reset the CP's of
T and S back to their initial character, we write
T.SETPOS(1)
S.SETPOS(1))

Text values may be transferred from one object to another by
S :=T

or a value into an object by
S := "TEXTWALUE"

Both are left justified.

The only restriction being that the TEXT object receiving the
value must be long enough to accept the value or else a run
time error occurs. Any positions not directly copied into are

filled with blanks.

Several editing and de-editing procedures are defined within
SIMULA. These convert numbers to external form and vice versa.
They are designed to operate repetitively across a field and are

thus oriented towards formatted output and input.

The further detailed description of the TEXT handling facilities

is given under the sub-sections

LENGTH and MAIN
subtexts
character access
text generation
TEXT assignment
TEXT editing

Throughout these subsections X, Y, Z denote TEXT references.

Section: 3.4

System/360 STMULA Page: 6
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

LENGTH and MAIN

INTEGER PROCEDURE LENGTHj

The value of X.LENGTHE is the number of CHARACTERS in the TEXT

object referenced by X.

1]
=
[wn]

e.g. after X :- BLANKS(10), then X.LENGTH
if Y == NOTEXT , then Y.LENGTH

H
o

TEXT PROCEDURE MAIN;

X.MAIN is a reference to the TEXT object which is or contains

the text value referenced by X.

e.g. after X :- BLANKS(20);
Y :=- X.SUB(1,10);
Z :- NOTEXT;

then X.MAIN ==
Y.MAIN ==
Z.MAIN == NOTEXT

The following relations hold for any TEXT reference X

X.MAIN.LENGTH >= X.LENGTH
X.MAIN.MAIN == X.MAIN

Section: 3.4

System/360 SIMULA Page: 7
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

SUBTEXTS

TEXT PROCEDURE SUB(I,N); INTEGER I,N;

The call
X .SUB(J,M)

designates that part of the TEXT object referenced by X starting
in CHARACTER position J and of length M characters.

e.g. after X := COPY("MAINUNOTLUSUB-TEXT");
T :- X.SUB(10,8);

then T = "SUB-TEXT"

For X.SUB(J,M) to be a legal call, the subtext must be in-
cluded in X. Thus

J >0
J + M-1 <= X.LENGTH

If these conditions do not hold a run time error results.

TEXT PROCEDURE STRIP;

STRIP is used to return a reference to a subfield of a TEXT
object which differs from the original in that all blanks on

the right are ignored. X.STRIP is thus equivalent to X.SUB(1l,N)
where the remaining CHARACTERS of X (from position N+1 and of
length X.LENGTH-N), if any, are all blanks.

Section: 3.U

System/360 . 8
ysten SIMULA iagel ’
evedl.:
USERS GUIDE Date: 5/4-1971

Originator: GB

CHARACTER access

The CHARACTERS, values housed in a TEXT object, are accessible
one at a time. Any TEXT reference contains a "position indicator"
which identifies the currently accessible CHARACTER of the refe-
renced TEXT object.

The position indicator of NOTEXT is 1. A TEXT reference obtained
by calling any system defined TEXT procedure has its position
indicator set to 1. The position indicator of a given TEXT refe-
rence may be altered by the PROCEDURES SETPOS, GETCHAR, PUTCHAR,
TEXT-reference-assignment and any editing or de-editing PROCEDURE.
Position indicators are left unaltered by TEXT reference relations,

TEXT value relations and TEXT value assignments.

INTEGER PROCEDURE POS;

X.POS is the current value of the position indicator of X.

The following relation is always TRUE.

1 <= X,P0OS <= X.LENGTH + 1

PROCEDURE SETPOS(I); INTEGER I;

The effect of X.SETPOS(M) is to assign the value of M to the
position indicator of X, if 1 <= M <= X.LENGTH + 1. If M is
out of this range, then the value X.LENGTH + 1 is assigned.

BOOLEAN PROCEDURE MORE;

X.MORE is TRUE if the position indicator of X is in the range
1 through X.LENGTH, otherwise the value is FALSE.

Section: 3.4
System/360 .. 9
ystems =t SIMULA iagel ;
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

CHARACTER PROCEDURE GETCHAR;

The value of X.GETCHAR is a copy of the currently accessible
CHARACTER of X provided X.MORE is TRUE. 1In addition, the posi-
tion indicator of X is then increased by one. A run time error
results if X.MORE is FALSE.

PROCEDURE PUTCHAR(C); CHARACTER C;

The effect of X.PUTCHAR(C) is to replace the currently accessible
CHARACTER of X by the value of C provided that X.MORE is TRUE.
In addition the position indicator of X is then increased by

one. If X.MORE is FALSE, a run time error results.

ExamEle:

The PROCEDURE COMPRESS rearranges the CHARACTERS of the TEXT
object referenced by the actual pardmeter by collecting non-
blank CHARACTERS in the leftmost part of the TEXT object and
filling in the remainder, if any, with blanks. Since the para-
meter is called by reference (and not by name), its position

indicator is unaltered.

PROCEDURE COMPRESS(T); TEXT T;
BEGIN TEXT U; CHARACTER C;
T.SETPOS(1); U := T;
MOVELEFT: WHILE U.MORE DO
BEGIN C := U.GETCHAR;
IF C == "' THEN T.PUTCHAR(C);
END;,

COMMENT ###WE NOW FILL IN THE RIGHT WITH
BLANKS###

T.SUB(T.POS,T.LENGTH-T.POS+1) := NOTEXT;
END ###COMPRESS###

Section: 3.4

System/360 STMULA Page: 10
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Note the use of a value assignment to T.SUB, and the use of
NOTEXT on a right hand side as a neat way of filling a TEXT

value to blanks.

After X := COPY("GETWRIDWOFGALLWBLANKS")
COMPRESS(X);

then X = "GETRIDOFALLBLANKSw "
X.STRIP = "GETRIDOFALLBLANKS"

Section: 3.4

System/360 SITMULA Page: 11
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

TEXT generation

N.B. The PROCEDURES are non-local.

TEXT PROCEDURE BLANKS(N); INTEGER N;

The reference value is a new TEXT object of lenéth N, filled
with blank CHARACTERS.

The value of the actual parameter, M, 1s restricted to
0 <= M <= 21%-20 = 32748

otherwise a run time error results.

TEXT PROCEDURE COPY(T); VALUE T; TEXT T;

The referenced value is a new TEXT object which is a copy of
the TEXT value which is (or is referenced by) the actual para-

meter.

Examgle:
T :- COPY("360SIMULA");

is equivalent to,

T :- BLANKS(9);
T := "360SIMULA";

Section: 3.4

Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

TEXT assignment

a) TEXT-reference-assignment

A TEXT-reference-assignment causes a copy of the TEXT-reference
obtained by evaluating the right part to be assigned to the left

part variable - this includes a copy of its position indicator.

e.g. after X :- COPY(M"ABCD");
X.SETPOS(3);
Y :- X3
then X.POS = 3
Y.POS =

In general, after
X :- P; where P is a TEXT reference,

then

are all TRUE.

Section: 3.4

Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

b) TEXT-value assignment

Consider the value assignment
T := Py

let the length of T be L1, and the length of the right part

be a TEXT value of length Lr. There are three cases to con-

sider:

Ll = Lr: the character contents of the right part
TEXT are copied to the left part TEXT

L1 > Lr: the character contents of the left part
are copied into the leftmost Lr characters
of the left part TEXT, whose remaining
L1-Lr CHARACTERS are filled with blanks.

L1 < Lr: a run time error results.

After T :- COPY("EIGHTWLCHARS");

T := "WRONG:11";
then T = "WRONG:1lluuw"
Note that

T := NOTEXT;

would set all the character positions of T to blanks.
In a multiple TEXT value assignment

Tl := T2 := TN := P;
then

TJ.LENGTH >= TJ+1.LENGTH
for J = 1,2,...,N-1

Section: 3.4

System/360 STMULA Page: 14
' Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Text editing and de-editing

TEXT editing and de-editing procedures are provided to transform
binary values into field data and vice versa. The syntax for

numeric-text-values (external data) follows:

numeric-text-values

grouped=-item
real-item

integer-item

grouped-item

sign-part[[groups].]groups

groups
[digits blank]... digits
real-item

[[digits].]digits[E sign-part digits]
sign-part
E sign-part digits

integer-item

sign-part digits

] ignfp_g?_‘t_
[blank]... [i] tblank]...

where 'E' represents an exponent sign. This CHARACTER may be
altered by the user by use of the PROCEDURE LOWTEN (see Appendix B).

A numeric-text-value is a character sequence under the above rules.

Section: 3.4

System/360 SIMULA Page: 15
, Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

De-editing procedures

A de-editing procedure operating on a given TEXT reference X

operates in the following way:

1) the longest numeric item of the given form is located,
contained within X and containing the first character of X.

If such error can be found, a run time error results.

2) the numeric item is interpreted as a number. If it is
outside the accepted range (see PART 2, segtion

a run time error results.

3) +the position indicator of X is made one greater than the

last character of the numeric item.

N.B. Unless otherwise stated, the de-editing procedures are

illustrated in the context:

T :-= COPY("1234.5+7.3&4AB");
S :- T.SUB(7,6);
R :- T.SUB(5,2);

INTEGER PROCEDURE GETINT;

Locates an integer—item.

T.GETINT 1234
S.GETINT 7

R.GETINT causes a run time error

il

Section: 3.4

Syst 360 :
ystem/ SIMULA iagel 16
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

REAL PROCEDURE GETREAL;

locates a real-item

T.GETREAL = 1234.5
S.GETREAL = 73000.0
R.GETREAL = 0.5

INTEGER PROCEDURE GETFRAC;

Locates a grouped item. In its interpretation, any number of
blanks, commas, and one decimal point are ignored and the resulting
value is an INTEGER.

After T := COPY(14013.42");

then T.GETFRAC = 101342

Section: 3.4

System/360 SIMULA Page: 17
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

Editing procedures

Editing procedures in a given text reference X convert arith-
metic values to numeric items. After an editing operation,

the numeric item obtained is right adjusted in the TEXT X pre-
ceded by padding blanks. The final value of the position indi-
cator is X.LENGTH+1. ' |

A positive number is edited with no sign. If X == NOTEXT then
a run time error results, otherwise if X is too short to con-
tain the numeric item, an edit overflow is caused (X is filled
with asterisks) and a warning message is given at the end of

program execution.

Let T :- BLANKS(10);

PROCEDURE PUTINT(I); INTEGER I;

T.PUTINT(VAL) converts the value of the parameter to an integer-

item of the designated value.

T.PUTINT(-37) UL~ 37
T.PUTINT(118.8) wuwapal 19

PROCEDURE PUTFIX(R,N); REAL R; INTEGER Nj

T.PUTFIX(VAL,M) results in an integer-item of M=0, or a real-
item (with no exponent) if M>1 with M digits after the decimal
point. It designates a number equal in value to VAL rounded

to M decimal places. A run time error results if M<O0.

T.PUTFIX(18,0) wusuuuual 8
. T.PUTFIX(-1375,4,3) wu-1375.400

Section: 3.4

System/360 SIMULA Page: 18
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

PROCEDURE PUTREAL(R,N); REAL R; TINTEGER Nj

T.PUTREAL(VAL,M) results in a real-item to M significant

places with an exponent

X . XXXXXXXXE#XX

M figures

If M<0, a run time error results
If M=0, the exponent is preceded by a sign-part

If M=1, the exponent is preceded by an integer-item of one digit.

T.PUTREAL(16,0) E+01
T.PUTREAL(-25.32,1) -3E+01
T.PUTREAL(-0.001472,3) -1.47E-03

PROCEDURE PUTFRAC(I,N); INTEGER I,N;

T.PUTFRAC(VAL,M) results in a grouped-item
XXX XXX . XXX XXX

If M=0, there is no decimal point. If M>0, there are M digits
after the decimal point. Each digit group consists of 3 digits
except possibly the first and the last. The numeric item is an

exact representation of I*lO—M.

T.PUTFRAC(10012416,3) 10012.416

The editing and de-editing procedures are oriented towards

"fixed field" text manipulation.

System/360 SIMULA

USERS GUIDE

Section: 3.y

Page: 19
Level: 0
Date: 5/4-1971

Originator: @B

ExamEle:

TEXT TR,TYPE,AMOUNT,PRICE,PAYMENT;
INTEGER PAY,TOTAL;
TR :- BLANKS(80);
TYPE :- TR.SUB(1,5);
AMOUNT :- TR.SUB(20,5);
PRICE :- TR.SUB(30,6);
PAYMENT :- TR.SUB(60,10);

IF TYPE = "ORDER" THEN

BEGIN PAY := AMOUNT.GETINT#PRICE.GETFRAC;
TOTAL := TOTAL + PAY;
PAYMENT.PUTFRAC(PAY,2);

END;

Section: 3.5
System/360 SIMULA Page: 1
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

5 THE SYSTEM CLASS BASICIO

Files or data sets are collections of data external to a pro-
gram. They may be organised in a sequential manner (a batch
of cards) or direct access manner (collection of items on a

disc where each item is specified directly).

A file is composed of several records each of which is an
ordered sequence of CHARACTERS.

record ————>
file of records

The internal representation of a record is naturally held in
a TEXT object, but TEXT handling facilities alone are not
enough for treating input and output to secondary storage.

We need in addition

a) means for tying the external medium to the internal

representation,

b) for transferring information (record-by-record) either

from the external file or to the external file, and

c) either interpreting the information in the internal
TEXT object in a sequential manner, or else filling the

TEXT object in a sequential manner.

Section: 3.5

System/360 SIMULA Page: 2
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

A SIMULA system provides system classes for these purposes.

The system classes have the hierarchy
file
INFILE OUTFILE DIRECTFILE
PRINTFILE

The identifier "file" is not accessible by the user - it

defines the parts common to the subclasses.
The four types of defined file are:

INFILE a sequential input file which transfers data

from an external file to the program

OUTFILE a sequential output file which transfers data

from the program to an external file

PRINTFILE (a subclass of OUTFILE) a sequential file with
' special extra facilities for transmitting infor-

mation to a line printer

DIRECTFILE a direct file with facilities for input and
output
Each file object has a TEXT parameter called "name" - again

this is NOT accessible by the user. When the file object is
created, the external file associated with this file object is
the file name appearing in a data set control card. The actual
parameter must be a valid DDNAME of up to eight CHARACTERS.

Section: 3.5

System/360 S I M U L A Page: 3
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

The CLASS file has the declaration:

CLASS file(name); VALUE name; TEXT name;
VIRTUAL : PROCEDURE OPEN, CLOSE;

BEGIN TEXT IMAGE;

PROCEDURE SETPOS(I); INTEGER I;
IMAGE.SETPOS(I);

INTEGER PROCEDURE POS; .
POS := IMAGE.POS;

BOOLEAN PROCEDURE MORE;
MORE := IMAGE.MORE;

INTEGER PROCEDURE LENGTHj
LENGTH := IMAGE.LENGTH;

END ###file##x

The variable IMAGE references a TEXT object value which acts

as a buffer containing the information currently being pro-

cessed.

The PROCEDURES SETP0OS, P0S, MORE and LENGTH defined local to
file operate on the buffer IMAGE. Given a reference to X to an
object belonging to a subclass of file, then it is now possible

to write the more convenient

X .MORE X.LENGTH ceaee

Instead of (the still valid)

X.IMAGE.MORE X.IMAGE.LENGTH ...ceeuenn

Section: 3.5

System/360 | SIMULA ' Page: I
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

The PROCEDURES OPEN and CLOSE, which are specified as VIRTUAL

but have no matching declaration at the "file" level, complete
the definition of CLASS file. The matching PROCEDURES declared
in the subclasses of "file" conform to the patterns below with
possible minor variations depending upon the subclass. The vari-

ations are listed in the appropriate following sub-sections.
The PROCEDURE outlines are:

PROCEDURE OPEN(BUF); TEXT BUF;

BEGIN IF OPEN THEN ERROR;
IMAGE :- BUF;

END

PROCEDURE CLOSE;

BEGIN v.vvvvunnn
IMAGE :- NOTEXT;

END

No information can be processed through a "file" object until
it has not only been generated but also opened. This can only
be achieved by a call on the PROCEDURE OPEN whose actual para-
meter is assigned to IMAGE and acts as the buffer. A call on

OPEN when a "file" is already open gives a run time error.

The PROCEDURE CLOSE closes a file and releases the buffer (by
the assignment IMAGE :- NOTEXT). No information may be trans-
mitted through a closed "file" object, but it may be opened
again by a further call on OPEN.

Section:

3.5
System/360 SIMULA Page: 5
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

CLASS INFILE

“file CLASS INFILE; VIRTUAL : PROCEDURE INIMAGE;
BOOLEAN PROCEDURE ENDFILE;

BEGIN PROCEDURE OPEN(BUF); TEXT BUF;..... 5
PROCEDURE CLOSE;......3
BOOLEAN PROCEDURE ENDFILE;..ceceeees
CHARACTER PROCEDURE INCHAR;........ 5
BOOLEAN PROCEDURE LASTITEM;........ 5
INTEGER PROCEDURE ININT;...... ceeees
REAL PROCEDURE INREALj....cceveeea. 5
INTEGER PROCEDURE INFRAC;...eeeevess

TEXT PROCEDURE INTEXT(W); INTEGER W,

END ###INFILE#®*¥%

PROCEDURE OPEN

conforms to the pattern listed

positions the current position

PROCEDURE CLOSE

conforms to the pattern listed

PROCEDURE ENDFILE

returns TRUE before the INFILE

with CLASS file but in addition
indicator to "LENGTH+1".

with CLASS file.

is opened (by OPEN), if the end

of external file marker has been met, and if the INFILE has
been closed (by a call on CLOSE).

PROCEDURE INIMAGE

transfers an external file record into the TEXT IMAGE. A run

time error will occur if the TEXT object referenced by IMAGE

is too short to contain the record. If the record is shorter

Section: 3.5

S P :
ystem/360 SIMULA Lagel 6
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

than IMAGE, it is left adjusted and the remainder of IMAGE is
filled with blanks. Finally the position indicator of IMAGE

is set to 1. When the last record has been read in, and INIMAGE
is called again, a call on ENDFILE will return TRUE. Any fur-
ther call on INIMAGE, INCHAR, INTEXT, ININT, INREAL or INFRAC

will result in a run time error.

BOOLEAN PROCEDURE LASTITEM;

returns FALSE only if the external file contains more infor-
mation (non-blank CHARACTERS). It scans past all blank CHARACTERS
(calling INIMAGE if need be). If LASTITEM returns FALSE then

the currently accessible CHARACTER of IMAGE is the first non-
blank CHARACTER. If ENDFILE returns TRUE, a call on LASTITEM

also returns TRUE.

CHARACTER PROCEDURE INCHAR;

gives access to the next available CHARACTER and scans past it.
If IMAGE.MORE is FALSE, the INIMAGE is called once and the value
of the call is the first CHARACTER of the new image. INCHAR
gives a run time errvor if an attempt is made to read past the

last record in the file.

TEXT PROCEDURE INTEXT(W); INTEGER W;

INTEXT(M) creates a copy of the next M CHARACTERS (which may be .
spread over several records) and returns a reference to this copy.
If M <0orM> 215—20 then a run time error results. A run

time error will also result if the file does not contain M more
CHARACTERS, i.e. an attempt is made to read past the last record.

The remaining PROCEDURES treat the file as a continuous stream
of records. They scan past any number of blanks (calling INIMAGE
. if need be) and then de-edit a numeric item lying in one image.

This is done by calling LASTITEM (which scans past the blanks)

Section: 3.5
System/360 STMULA Page: 7
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

and then referencing the remainder of the current IMAGE by a
temporary TEXT variable, say T. The walue of the "IN##*'-
PROCEDURE call is the value of the corresponding call on T."GET##%#'",
On exit, the current position indicator is updated to reference
past the de-edited figéld, i.e. to reference the first CHARACTER

which is not a part of the de-edited numeric item.

c8 - s intermediat
: e
Lo I TTaTels] Is]al... .0 TMAGE step

current position
indicator

T.GETINT = 123

N I N X N T PO

current position
indicator

ININT = 123

Run time errors will result if the remaining CHARACTERS in
the file are blanks (LASTITEM = TRUE) or if the item is not

numeric.

An outline of ININT is:

INTEGER PROCEDURE ININT;

BEGIN IF LASTITEM THEN ERROR;
T :- IMAGE.SUB(POS,LENGTH-POS+1);
ININT := T.GETINT;
SETPOS(POS+T.POS-1)};

END ### ININT###

INREAL and INFRAC follow the same pattern.

Section:

System/360 S I M U L A Page:
Level:
USERS GUIDE Date:

3.5

8

0
5/4-1971

Originator: GB

CLASS OUTFILE

file CLASS OUTFILE; VIRTUAL : PROCEDURE OUTIMAGE;

BEGIN PROCEDURE OPEN(BUF); TEXT BUF;....;
PROCEDURE CLOSE;..... treetnaecanen 5
PROCEDURE OUTIMAGE; ;.. eevenacsses 5
PROCEDURE OUTINT(I,W); INTEGER I, Wi.ueeeeeeeeennens

PROCEDURE OUTFIX(R,M,W); REAL R; INTEGER N,W;....;
PROCEDURE OUTREAL(R,N,W); REAL R; INTEGER N,W;...;
PROCEDURE OUTFRAC(I,N,W); INTEGER I ,N,Wj.eueusonss
PROCEDURE OUTTEXT(T); VALUE T3 TEXT Tj..e... e

PROCEDURE OUTCHAR(C); CHARACTER Cj;..... ceer e
END ###QUTFILE#*#*%

PROCEDURE OPEN(BUF); TEXT BUF;

b

b

]

]

b]

Follows the pattern set by the PROCEDURE OPEN listed with

CLASS file.

PROCEDURE CLOSE;

Conforms to the pattern set by the PROCEDURE CLOSE listed

with CLASS file but in addition checks the value of POS.

If POS == 1 then presumably extra information has been copied

into IMAGE since the last call on OUTIMAGE.

Accordingly, if P0OS == 1, OUTIMAGE will be called once before

the OUTTILE is closed.

PROCEDURE OUTIMAGE;

OUTIMAGE transfers the contents of IMAGE to the external file

creating a copy as a new record. IMAGE is then cleared to

blanks and its current 1ndicator set to one.

Section: 3.5
System/360 : STMULA Page: g
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

PROCEDURE OUTTEXT(T); VALUE T; TEXT T;

A copy of the CHARACTER sequence represented by the actual
parameter is edited into IMAGE from the current position. ’
If the remaining length of IMAGE is insufficient, INIMAGE is
called and the editing process proceeds. Thus the TEXT value

may be split over several external records.

PROCEDURE OUTCHAR(C); CHARACTER C;°

Outputs the value of C into the current position of IMAGE
(if MORE = FALSE, then OUTIMAGE is called first). In either

case, the current position indicator is then incremented.

The remaining PROCEDURES are all based upon the PUT-PROCEDURES
local to TEXTs. The corresponding PUT-PROCEDURES are augmented

by an extra parameter W which specifies the field width.

W characters

IMAGE-—:f//é M R

[2\ .I
—

portion FIELD
of IMAGE
already filled

Final position of current
position indicator

The editing PROCEDURE commences by establishing a temporary
TEXT reference (FIELD) to the next sequence of W CHARACTERS
lying in one IMAGE. If the current IMAGE has not enough space
left, INIMAGE is called. Then the value is edited by calling
FIELD."PUT###" where "PUT###" is the PUT-PROCEDURE corres-
ponding to the OUT-PROCEDURE. Finally the current position
indicator is increased by W to reference past FIELD - past the
just-edited field.

Section: 3.5

System/360 SIMULA Page: 10
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

PROCEDURE OUTINT(I,W); INTEGER I,W;
FIELD(W) .OUTINT(I);

PROCEDURE OUTFRAC(I,N,W); INTEGER I,N,W;
FIELD(W) .PUTFRAC(I,N);

PROCEDURE OUTREAL(P,N,W); REAL P; INTEGER N,W;
FIELD(W).PUTREAL(P,N);

PROCEDURE OUTFIX(P,M,W); REAL P; INTEGER M,W;
FIELD(W) .PUTFIX(P,M);

Section: 3.5

' Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

CLASS PRINTFILE

OUTFILE CLASS PRINTFILE;

BEGIN PROCEDURE OPEN(BUF); TEXT BUF3.:eevuuneennnnn ;
PROCEDURE CLOSE;.....;
PROCEDURE LINESPERPAGE(N); INTEGER Nj..vvvw.. ;
INTEGER PROCEDURE LINE(N); INTEGER Nj........ ;
PROCEDURE SPACING(N); INTEGER Nj.vvvuuewwnnnn ;
PROCEDURE EJECT(N); INTEGER Njuvuueuwereeonans ;
PROCEDURE OUTTIMAGE S« e v e v veevnnsennnenns e ;

END ###PRINTFILE#*##

CLASS PRINTFILE further orients the prefixing CLASS OUTFILE
towards line printer output. The PROCEDURES OPEN and CLOSE
take the pattern of those local to OUTFILE but in addition
OPEN positions to the top of the next page.

PROCEDURE LINESPERPAGE(N); INTEGER Nj

Initially the number of printable lines per page is fixed at
some value (V) dependent upon the installation. A call
LINESPERPAGE(M) will alter this figure to allow only M printable

lines per page. A run time error results if M < 0 or M > V.

PROCEDURE SPACING(N); INTEGER Nj

Initially the spacing is 1 and successive images are printed

on successive lines. A call SPACING(M) will alter this to
separate successive lines by M-1 blank lines. This becomes
effective after the next call on OUTIMAGE. If M > "current
value of lines per page", or M < 0, then a run time error
results. If M = 0, overprinting w;ll occur - successive images

being printed on the same physical line.

Secfion: 3.5

System/360 STIMULA Page: 12
Level: 0
USERS GUIDE Date: 5/4-1971

Originator: @B

PROCEDURE EJECT(N); INTEGER N;

This PROCEDURE skips to a certain line on the page - (it avoids

calling OUTIMAGE several times). EJECT(L) will position to line
L on this page if this is further down the current page (if

L > LINE), or else skip to LINE L of the next page if L <= LINE.

A run time error occurs if L < 0. If L > LINESPERPAGE, EJECT(L)
is equivalent to EJECT(1l).

INTEGER PROCEDURE LINE;

This PROCEDURE returns the INTEGER value of the line number
which indicates the next line to be printed. Thus EJECT(LINE+3)
will skip three lines and not alter spacing. After each call on

OUTIMAGE, the line number is incremented by the current spacing.

PROCEDURE OUTTMAGE;

This PROCEDURE acts like the OUTIMAGE of OUTFILE but in
addition increments the line number by spacing, and will
posifion to the top of the next page if the current page is
filled.

Section: 3.9

Syst 36 . 13
ystem/360 S I MU L A ‘iagel :
evel:
USERS GUIDE Date: 5/4-1971

Originator: GB

Examgle:

This example shows the use of three types of file and how to
open and close them. The example was chosen to demonstrate
these features and how formatting is available by use of the
sub-text concept. The logic of the example is particularly
simple. A file of transactions has been punched on cards in
the format

col 1-5 customer number KNR
col 7-16 sum of debit transactions DB
col 19-28 sum of credit transactions KR

Each transaction is on a fresh card. The information is to
be compressed and recorded on a new sequential file on tape.
The length of each tape record is 15 CHARACTERS, and its

format is:

5 10
KNR KR - DB
customer total sum of
number transactions

Checks are made that the customer number is valid (1-3-7
digit check) and that the card is validly punched. If not,
a copy of the card is printed on a line printer, and the

scan continues.

Note that the INFILE and PRINTFILE share the same buffer.

Section: 3.5

System/360 SITMULA Page: 14
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:gB

(//CARDS

BUFTER KUNDE

NKUNDE . IMAGE |

//TAPE DD DSN=A,DISP=(NEW,CATLG),LABEL=(1,SL),UNIT=TAPE,VOL=SER=TAPEL

//PRINTER DD SYSOUT=A
//CARDS DD #

<cards>

S #

Section: 3.5

System/360 .
yoREE SIMULA Fager - *
Level:
USERS GUIDE Date: 5/4-1971

Originator: GB

BEGIN

TEXT KNR, DB, KR, NR, T1, T2, T3, T4, KT, TSUM,
TS, BUFFER;

INTEGER SUM, SALDO;

REF(INFILE) KUNDEKORT;

REF(PRINTFILE) PRINT;

REF(QUTFILE) NKUNDE;

BOOLEAN PROCEDURE NONNUMERIC(T); TEXT T3.uvuvernnn ;

COMMENT ###THIS PROCEDURE RETURNS TRUE IF THE TEXT
PARAMETER CAN NOT BE NUMERICALLY INTER-
PRETED FROM THE LEFT### ;

BUFFER :- BLANKS(132);

BUFFER := "ERROR";

COMMENT ##%#CONSTRUCT THE CARDFILE### ;

KUNDEKORT :- NEW INFILE("CARDS");

KUNDEKORT . OPEN (BUFFER.SUB(10,80)) ;

KNR :- BUFFER.SUB(1,5);

NR :- KNR.SUB(1l,4);
Tl :- NR.SUB(1,1);
T2 :- NR.SUB(2,1);
‘T3 :- NR.SUB(3,1);
T4 :- NR.SUB(L4,1);

KT :- KNR.SUB(5,1);
DB :- BUFFER.SUB(7,10);
KR :- BUFFER.SUB(19,10);

Section: 3.5

System/360 SITMULA Page: 16
Level: 0
USERS GUIDE Date: 5/4-1971

Originator:GB

COMMENT #*##CONSTRUCT PRINTFILE###
PRINT :- NEW PRINTFILE("PRINTER");
PRINT.OPEN(BUFFER) ;

COMMENT ###CONSTRUCT TAPEFILE###
NKUNDE :- NEW OUTFILE("TAPE");
NKUNDE.OPEN(BLANKS(15));

COMMENT ###CONSTRUCT WORKING TEXT TSUM### ;
TSUM :- BLANKS(3);
TS :- TSUM.SUB(3,1);

Section: 3.5

S 360 P T 17
ystem/ SIMULA Lagel :
evel .
USERS GUIDE Date: 5/4-1971

Originator: GB

INSPECT NKUNDE DO
BEGIN
KUNDEKORT . INIMAGE;
WHILE = KUNDEKORT.ENDFILE DO
BEGIN IF NONNUMERIC(KNR) OR
NONNUMERIC(DB) OR
NONNUMERIC(KR)
THEN ERROR: PRINT,OUTIMAGE
ELSE BEGIN COMMENT ##%#137 DIGIT CHECK*#*#*
SUM := 7#(T1,GETINT + T4.GETINT) +
3#*T3.GETINT + T2.GETINT;
TSUM.PUTINT(SUM);
IF TS== KT THEN GOTO ERROR;

COMMENT ###QUTPUT TO TAPL#¥#*#%*
SALDO := KR.GETINT - DB.GETINT;
OUTTEXT(KNR) ;
OUTINT(SALDO,10);
OUTIMAGE;

END;

KUNDEKORT.INIMAGE;

END;
END ##%INSPECT NKUNDE###%

SLUTT: KUNDEKORT.CLOSE;
NKUNDE.CLOSE;
PRINT.CLOSE

END

System/360 STMULA

USERS GUIDE

Section: 3.5

Page: 18
Level: 0
Date: 5/4-1871

Originator:GB

CLASS DIRECTFILE

file CLASS DIRECTFILE;

VIRTUAL: PROCEDURE LOCATE, ENDFILE, INIMAGE, OUTIMAGE;

BEGIN PROCEDURE OPEN(BUF); TEXT BUFj.veeeveenns

PROCEDURE CLOSE;.+..... e, ceen
INTEGER PROCEDURE LOCATION vuwvvevenennnns
PROCEDURE LOCATE(I); INTEGER T .uveuenecnnn
BOOLEAN PROCEDURE ENDFILE;.eeveveuennn. ceen
PROCEDURE INIMAGE;..... e e
CHARACTER PROCEDURE INCHAR;...... R
BOOLEAN PROCEDURE LASTITEM} . .veeennenn. ..
INTEGER PROCEDURE ININT;.veveveneonnnns ..
REAL PROCEDURE INREAL . veveunonennnnnnennnns

INTEGER PROCEDURE INFRAC; . .veveeeeooennnne
TEXT PROCEDURE INTEXT(W); INTEGER Wj;.....
PROCEDURE OUTIMAGE;...eveue.n N
PROCEDURE OUTCHAR(C); CHARACTER Cj;.......
PROCEDURE OUTINT(I,W); INTEGER I,W;......

et s}

PROCEDURE OUTFIX(R,N,W); REAL R; INTEGER N,Wj..:...;
PROCEDURE OUTREAL(R,N,W); REAL R; INTEGER M,W;.....;

PROCEDURE OUTFRAC(I,N,W); INTEGER I,N,W;.
PROCEDURE OUTTEXT(T); VALUE T; TEXT Tj...
END ###DIRECTFILE###

Section: 3.5

: Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

A direct file represents an external file in which individual
records are addressed by indices (ordinal numbers). The index

of the current record is returned by a call on LOCATION. The
current record may be copied into the program by a call on INIMAGE,
or overwritten by a call on OUTIMAGE. In either case, the sequen-
tially next record is then taken as the current record. This
sequential accessing may be altered at any time a call LOCATE(M)
which will locate the Mth external record and make it the new

current record.

PROCEDURE OPEN

conforms to the pattern of OPEN in CLASS file but in addition

locates the first record.

PROCEDURE CLOSE

conforms to the pattern of CLOSE in CLASS file.

PROCEDURE ENDFILE

is FALSE if the current index locates a record in the file.

Calls on the PROCEDURES INIMAGE and OUTIMAGE will cause run
time errors if ENDFILE is TRUE otherwise they conform to these
of the same identifiers in INFILE and OUTFILE but in addition

increment the index of the current record by one.

The remaining PROCEDURES are analogous to the corresponding
PROCEDURES of INFILE and OUTFILE.

Section: 3.5

- Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

CLASS BASICIO

The system defined file facilities are grouped together in
the CLASS BASICIO whose skeleton reads:

CLASS BASICIO(LINELENGTH); INTEGER LINELENGTH;

BEGIN CLASS fileieieeierseeoennnnnees
file CLASS INFILE..:eeeovennoes
file CLASS OUTFILE. . veeveeensss
file CLASS DIRECTFILE...vseeses .
file CLASS PRINTFILE. .eeeeeeeses
REF(INFILE)sysin;

REF(PRINTFILE)sysout;
REF(INFILE) PROCEDURE SYSIN; SYSIN :- sysin;
REF(PRINTFILE) PROCEDURE SYSOUT; SYSOUT :- sysouts
sysin := NEW INFILE("SYSIN");
sysin.OPEN(BLANKS(80));
sysout :- NEW OUTFILE("SYSOUT");
sysout .OPEN(BLANKS(LINELENGTH));
INNER;
sysin.CLOSE; sysout.CLOSE;

END ##%BASICIO%##%

Section: 3.5

System/36 ; Page:
ystem/360 SIMULA Lagel 21
evel: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

BASICIO contains actions to generate an INFILE (SYSIN for
cardé), and a PRINTFILE (SYSOUT for line printer). These
objects are accessible only through PROCEDURES which copy the
values of certain identifiers (sysin, sysout) which are other-

wise not accessible by the user.

A user's program behaves as though it is enclosed as follows:

BASICIO(132) BEGIN INSPECT SYSIN DO
INSPECT SYSOUT DO
<program>
END;

When a user program begins the system automatically generates
two files - one INFILE for card input referenced by SYSIN, and

one for output on a line printer referenced by SYSOUT.

SYSIN *""“‘“‘\s\tg o~ LHIHMAGE

IMAGE e
ININT
INREAL
INTEXT
INIMAGE

CARD

A\ 4

ooooooooooo

Y

IMAGE
QUTINT

OUTREAL OUTIMAGE
QUTTEXT

OUTIMAGE
EJECT

LIND
.......... PRINTER

Section: 3.5

Level: 0
USERS GUIDE Date: 5/4-1971

Originator: GB

When the actions of the user defined program are exhausted,
control returns to the prefix level of the BASICIO object and
continues atter the INNER. The following three statements

close the three system generated files.

The inspect statements enclosing the program allow the user

to write ININT, INIMAGE,..... instead of SYSIN.ININT,

SYSIN.IMAGE and OUTREAL, OUTIMAGE,.... instead of SYSOUT;OUTREAL,
SYSOUT.OUTIMAGE. There are attribute name clashes

OPEN which should never be used for
CLOSE} SYSIN or SYSOUT

IMAGE

SETPOS

POS

MORE

LENGTH

When these occur they are naturally bound to SYSOUT and the
corresponding attributes of SYSIN may be obtained by writing
SYSIN.SETPOS, SYSIN.IMAGE etc. Alternatively, an input section

may be written as

INSPECT SYSIN DO

BEGIN
input - in this block occurrences IMAGE, SETPOS,
POS, MORE and LENGTH are bound to SYSIN

END;

