- 23 -
INTRODUCTION - RUNTIME SYSTEM

Formal description of runtime system routines are given
in a SIMULA 67 like language.

The difference of the language used for description,
as compared to ordinary SIMULA 67, is as follows:

label variables and the denotes operation for labels
have been introduced with an obvious meaning. Labels
as in SIMULA will be considered to be label constants.

The basic symbol exit has been introduced, meaning
the place where a procedure was called. exit is a
designational expression.

Arithmetic and comparison operations on ref expressions
have been included with an obvious meaning:

1. The expressions "ref + integer"”, "ref -~ integer",
"integer + ref", "integer ~ ref", treat the
reference as an integer, the address designated
by the ref quantity.

The result is an integer.

2. The assignment

ref variable :- integer expression;

causes the value of the integer expression to be
stored in the ref variable as an address.

3. Value relations between ref expressions are

defined by adding the integer 0 (zero) to both
operands, applying rule 1 above, and use the con-

ventional rules for relations between arithmetic
expressions.

—24_

The notation refto X is used to obtain a reference

to a quantity X. It is a reference expression.

The notation val X is used to refer to the value of
a quantity referred to by X.

The notation ref(program) has been used for reference
to memory cells (program points).,

The term "textual 1link" ("static link") means a pointer
from the driver of a block instance to the driver of
the block instance textually enclosing the former. An
example is: the textual link of a procedure P is to
the driver of the block instance B where the procedure
is declared. |

The term "dynamic link" means a pointer from the driver
of a kblock instance to the driver of the block instance
dynamically enclosing the fcrmer. An example is: the
dynamic link of a procedure P is to the driver of the
block instance B where the procedure is called,

The abbreviation B.I. will be used for "block instance",

A o Wy B . e s - o D gy

Driver technigue

Since a terminated B.I. seldom requires the system
information that was necessary prior to the termination,
it 1s natural to try to find a method so that this
information may be discarded when the B.I. terminates,

One such method is the driver technique. The system
information in the B.I. itself is reduced to a minimum,
the rest is stored outside the object in a "notice",

There are t@o kinds of notices: “"drivers" containing
system information relevant to any kind of B.I., and
"eventnotices" containing sequencing information for an
active or suspended process,

All notices are assumed to be of the same size,

TR e ol s e o o e e o e s o

When the driver technique is used, data core storage
(assumed to be continuous) is dynamically divided into
two distinct parts called POOL 1 and POOL 2. Notices
are allocated from POOL 2, all other Storage from POOL 1.

Storage is allocated from POOL 1 simply by moving a
pointer towards POOL 2. POOL 2 uses a similar technique
only it has in addition an available storage list of the

last in -~ first out type. On‘this’list, notices are
kept chained when not in use,

The head of this list is a ref (notice) nothead declared
in the runtime system.

In the following it is assumed that POOL 1 is from the

"lower end" of available storage while POOL 2 is from
the "upper end".

Four ref variables declared in the runtime system serve
as boundary pointers for the two pools of storage: '
POOL1FIRST, POOL1LAST, POOLZBOTTOM, POOL2TOP.

Two of these are fixed when execution of the SIMULA
program is initiated: POOL1FIRST points to the
first word of available storage, POOL2BOTTOM points

to the last word of available storage where a notice
may start.

The two other ref variables, POOL1LAST and POOL2TOP
determine the boundaries of POOL 1 and POOL 2 respectively.

POOL2TOP points to the first word of the uppermost
notice (whether available or not). POOL1LAST points
to the first word following poOOL 1.

- 26 =

A storage collapse condition exists whenever a storage
assignmen£ would cause POOL2TOP to become less than
or equal to POOLLLAST + 1. (At least storage for one

integer must be available for the store collapse
between POOL 1 and POOL 2.)

Fig. 1 indicates the usual situation during program
execution (proportions of POOL 1 and POOL 2 are
distorted).

During program execution, the ref (driver) variable

CD ("current driver") in the runtime system will always
point to the dynamically innermost driver in the current
operating object. |

- 27 -

“——— POOL 1 FIRST

B.I.

aadian I R R e T N SR —

POCL 1

€ pooL 1 LazT

AVAILABLE

STORAGE

E POOL 2 TOP

NOTICE

POOL 2

NOTICE

| < POOL 2 BOTTOM

Fig. 1. Core Storage Layout during brogram execution.

_28—

2.3 The_classes_"object" and "prototype"

T 0 e e e e . an sn e e Ak e v W . G S e o S o - n e —

A logical unit of information in POOL 1 will be called
a "block instance". Examples of data blocks are:
instance of a subblock, procedure instance or class
instance (without their local arrays), an accumulator
stack or an array. '

A block instance is an instance of a subclass of the
(fictive) class "object". For each family of data '
blocks (different‘instances of the same block constitute
one family) there exists one compiler generated
"prototype" describing that family. An object contains

a reference to the corresponding prototype, called the

"prototype pointer" (abbreviated PP),

Arrays and accumulator stacks are considered two special
families. They have no prototype. The relevant infor-
mation is contained within the objects.

Special values of the prototype pointer PP are used to
indicate arrays and accumulator stacks.

The use of each variable declared in class prototype
is described below:

Type Name Usage
integer 1lg Total length (including that of

data for pcssible prefixes) of a
B.I. of this family. This includes
necessary space for description of
each array declared within the
object,

integer nvirt Number of virtuals inh B.I.'s of
' this family.

- 29 -

nge Name Usage

integer ‘ . nrp Number of parameters for B.I.'s

of this family.

integer nrl Number of local pointers in this
' family. |
integer level - - Static block level of the declara-

tion of this family.

integer vtype For procedure, type of result.
ref (program) statements Address of first statement in body.
ref (program) inretur ‘ Return address from statement

inner; in this class. none if

not prototype for a class.

ref (program) declare In-line coding to perform declara-
| tions local to the object. For a
class, or a prefixed block, this
in-line coding returns to the run-
time system. In all other cases,
the in—iine coding will continue
with the first statement.

integer array relad Relative address in data object

for parameters and local pointers.

Boolean array valu true if and only if value parameter.
ref array progaddr Either: program address (for

virtual labels and switches) or
pointer to procedure prototype
(for virtual procedures).

...30-

Type Name Usage
Boolean pb true if and only if this family
' is a prefixed block.
Boolean - ob true if and only if this family
is a class or a prefixed block,
Boolean local classes' true if and only if this family

has local class declarations.,

ref (prototype)

array prefix =~ Pointers to prototypes for the
prefix hierarchy of this family,
Prefix (0) is the outermost prefix,

ref (program) endblk - Address of statement after end
of a prefixed block.

integer ~ plev Prefix level (i.e. the number of

prefixes in the prefix chain of
this block).

As mentioned earlier there are two kinds of notices:
drivers and eventnotices.

The ref variable "notc" is only used during store
collapse to indicate where a notice has been moved.

- In this case the actual contents of the notice is

not used. Thus "notc" may, in actual implementation,
occupy the same part of a notice as for instance "obj",

"evp" and "acs" are mutually exclusive, and may thus use

the same space in the driver.

In an actual implementation, the pointers to POOL 2 may be
made relative by assuming a maximum size of POOL 2. This
also applies to pointers from POOL 1 to POOL 2, for instance
"r'IDP " R

..31-

"The use of each variable declared in class notice and

its subclasses driver and eventnotice are described

below.

Name

Type

ref (object) obj

Boolean referenced

ref (notice) notc

real time
ref BL,LL,RL
(eventnotice)

=% zzoosTEn ' Dex
T=f rmosTEn' D

—

POOL1

n.a.

POOL2

POOL 2

Usage

Points to the B.I. belonging

to this notice. The value

none is illegal for "obj"

except when the driver has not
been éompleted.

The store collapse must be able
to handle the case¢ "obj == none"

even for master drivers.

false always except when in
store collapse where it is set

true if notice is referenceable.

Used
When

solely during store collapse.
a notice has been moved,
"notc" in the old notice will
indicafe where the new notice
has been put. Used for update

of pointers to POOL 2.

Evtime for the process refer-
enced by obj of this event-
notice,

See the section on organization
of the sequencing set.

T e rat addireeas EarA iRE

for procedures, thunks and
attached objects: return point
(exit).

Pryr inpetiet bfleois ang pred-
C ek, Bd oot . ooyt
where object or prefixed block

is to resume operation.

o T S M S DSt et

Txge Name

ref (driver) cdrp

ref (object) acs

ref (driver drp

ref (driver) drex

~

ref (driver) drch
Boolean . con
Boolean rp

POOL 2

POOL 1

POOL 2

Usage

Pointer to the driver of the
B.I. statically outside the
connected B.I. (May be dropped
if compiler remembers the block

level of the class declaration).

Pointer to accumulator stack
which was saved when this
driver was created. The value
none indicates no accumulator
stack.

Pointer to the driver of the
B.I. statically outside the

. 'B.I. belonging to this driver.

POOL 2

POOL 2

n.a,

Pointer to the driver of the
B.I. dynamically outside the
B.I. belonging to this driver,
except for prefixed blocks and
detached objects when it is a
pointer to the driver of the

dynamically innermost B,I.

Used in store collapse to
chain drivers for later pro-
cessing.

true if and only if the driver
is a connector or a thunk
driver acting for a @obnnector.

true if and only 1if this is the
driver of a detached object or
a prefixed block.

Boolean pb n.a. = true if and only if this is
the driver of a prefixed block.

Boolean dot | n;a. true if and only if this is
the driver of a procedure
called by remote referencing

(dot-nqtation).
Boolean md n.a. true if and only if this driver

is a master driver.

Boolean ob true if and only if this is
the driver of an attached or
a detached objeét or a prefixed

block.
ref evp - POOL 2 Pointer to the eventnotice of
(eventnotice) : the process belonging to this

‘driver. The value is none if
"obj" does not point to a sus-
pended or active process.

integer level A n.a. Apparent block level of this
driver,

Below is a summary of the contents of drivers for
different block states. Note that the contents of
"obj" and "drp" are not shown since their contents
are the same for all drivers.

"drch" and "notc" aré also omitted since they are
only used during store collapse.

For the Boolean variables, f is used for false and
t for true.

Subblock

Procedure
or attached

object
Thunk
(5)
Prefixed
block
Detached
class
body
Connector
(6)
(1)
(2)
(3)
(4)

pex drex

none equal to drp

exit pointer to
driver of
dyn.outer
block

exit pointer to
driver of
block where
thunk is
called.

react. pointer to
point. innermost
(1) block (4)

react. pointer to
point innermost \
(1) block (4)

none pointer to
driver of
the dyn.
outer blk.

none

none

none

none

none
(2)

none

" none

pointer

to acc.

stk. (3)

j'pointer
to acc.
stk. (3)

none

none

none

Cor.ceptually none if operating B.I.

Base section 8).

Pointer to eventnotice if active or

(5)

(Cfr.

f £
f f
£f £
t t
f t
£ £
Common

nore is a possible value meaning "no accumulator

stack".

Disregarded for innermost operating B.I.

(7)

suspended process,

J
&
i
£
H
N
5

2.4

- 35 =
(5) "con" and "cdrp" as driver of calling B.I.

(6) "cdrp" is equal to "drp" of the connected B.I.
(7) false for procedure, true for attached B.I.
Display

For reasons of efficiency, the static chain may be

duplicated in a vector of fixed locations (registers
or core storage) called a display.

The display may be explicit as a vector or implicit by
the static links (drp) and B.I. pointers (obj) in the
drivers.

We_may, when using driver technique, talk of two different
displays:

l. DISPLAY pointing to B.I.'s
2. DDISPLAY pointing to drivers

Obviously it is possible to establish either of these
from the information in CD.

If DISPLAY is kept in index registers, the number of
possible static levels in a program may be limited.
This number should however never be less than 8.

DDISPLAY may be partially present or completely absent
in some implementations.

DISPLAY and DDISPLAY must be updated whenever the value
-0of CD is changed, except in the case of exit from a
subblock, connection block or a prefixed block.

lg

ob,pb

nvirt

nrp

._.36-.

o oo s wp (Rt Tty By — s T e) - ———— - o~

Information in the prototypes is heavily used at runtime.
This is most obvious in the store collapse, where the
prototype must be scanned once for every referehceable
B.I. Even when a B.I. it is not referenceable, the length
(lg) of the data universe must be found in the prototype.

Prototype information is also used when a block, prefixed
block, procedure or class B.I. is created.

Since, in other cases, the access to prototype information
usually would be indirect (through the prototype pointer,
PP, in the object), part of the prototype information

may be duplicated in the drivers. ‘

The following should be notecd about the information kept
in the prototype in the formal description:

Required item. Without it, the length of a B.I. could
not be found at runtime. To avoid accumulating length
of all prefixed at runtime, this length is the total
length including data for the prefixes.

Required,

Required in one form or another, Virtual descriptors
must be located at fixed positions within the prototype
relative to PP. Thus, nvirt is required to skip these
descriptors when scanning the prototype during store
collapse, |

Required for procedures to compare the actual number
of parameters to the number givan in the prosedure
declaration., This information is used when a formal
or virtual procedure is called.

nrl

level

..37._

Redundant if a special end prototype signal is
introduced in the prototype.

Required,

statements Required for classes and prefixed blocks, May be

inretur

endblk

declare

prefix

relad
kinc
type
valu

virtloc
progaddr

omitted for subblocks and procedures if the compiler
generates a jump from end of declarations to first
statement,

Reguired if the compiler does not generate the end of
a subclass as an in-line return following inner; of
the prefix.

Required for prefixed blocks.

Required for procedures, classes and prefixed blocks.
May be omitted for subblocks if the declarations
immediately follow call on BB.

Required for classes and prefixed blocks,

Prefix is used to get fast transition from declaration
code in the prefix to declaration code in the main part,
as well as fast transition from the declaration code

in the main part to the statements in the outermost
pretix. |

> Required as part of the individual descriptors.,

Required as part of virtual descriptors.

local classes Required for driver deallocation purposes.

type

plev

' - 38 -~

Required for procedures. For a ref procedure it
could be a pointer to the prototype of the class
qualifying the result,

Required.

The present section describes a possible technique for
wholesale deallocation in SIMULA 67 Common Base program.
The formal description of the runtime system does not
include a description of the allocation scheme and the

store collapse required for this technique.

The natural dividiné lines between parts of a SIMULA 67
program are the prefixed blocks. If a wholesale deallocation
technique should be used, the fact that no non-local
references may refer to anything local, is of great
importance. This property is inherent in prefixed blocks,
sub-blocks and procedures. In the present approach, only
prefixed blocks and sub-blocks will be considered.

The approach described makes wholesale deallocation of data

objects possible. Drivers are assumed to be deallocated
separately.

POOL 1 is assumed to contain a list of descriptions of the
prefixed blocks and sub-blocks in the system at each instant.
This is a dynamic description where a declared block may

be represented more than once due to its use within an
object or due to recursive use of procedure. Since the

size of this list varies dynamically, it must be possxble

to expand and contract this list,

The rest of POOL 1 is divided in as many parts as there are

prefixed blocks and sub-blccks in the system at any time.

..39_

The compacting garbage collector is called whenever an area
overflows into that of another block. Only the area that
overflowed is compacted. Possibly, some part of the
available area for the block preceding this one in core is
stolen,

If area compacting does not yield a sufficiently good
result, the entire store is compacted and new areas
assigned. \

Upon generation of a class B.I., its storage, including
that for local arrays, is taken from the area assigned

to the block where the declaration of the class is found.
The local storage for a procedure may go into that of the
block surrounding the call. '

If a denotes operation is available for arrays (this is
not the case within the Common Base), arrays could be
put into a separate area. The array area would be compacted

only when the entire store was compacted.

When a prefixed block or sub-block is left, the entire
area assigned to that block is made available simply by
removing its descriptor from the descriptor table. Drivers

may be deallocated by the sequential scan of the area.

