e R SO S

8.

ACTUAL PARAMETERS

For“ <type> quantities, the call by value causes an
assignment to be made to a local variable. 1In the same -
way, a call by default (text only) will cause a denotes
operation to be performed to a local variable.

For classes, the parameter checking and type conversion
are done by the compiler which will also generate the necessary
in-line coding to store the values into the class instance.

For procedures, with the exception of external, formal and
virtual ones, the value parameters are checked} type con-
verted and Stored within the procedure instancevby compiler
generated in-line coding.

Name\parameters have been partly checked by the compiler
in that all errors that do not depend on actual values
at runtime are detected.

For external, formal and virtual procedures, the parameter
correspondence cannot be checked at compile time. Thus

the checking must be done by the appropriate runtime sys tem
routines.

For external, formal and virtual procedures, all parameters
have a static parameter descriptor (spd).

The contents of an spd are as follows:
All spd's contain type, kind and spd-type information.

Depending on the. spd-type information, the rest of the

spd contains:



A constant address..

Actual parameter is a <types constant (real, integer,
Boolean, character, text or ref). '

A block level and a relative data address.
Actual parameter is a simple varlable (except label)
or a formal parameter.

A block level and a switch (or label) address.

Actual parameter is a switch (or label) name.

A block level and a prototype pointer,

Actual parameter is a procedure name.

-A thunk address.

~Actual parameter is a subscripted variable, remote

variable or an expression.

Any reference parameter spd muSt contain or give access

to the qualification of the actual parameter, i.e. the
identification (prototype pointer) of the quallfylng class
and its apparent block level.

The appropriate runtime subroutine will, for name parameters,
convert an spd to a dynamic parameter descriptor (dpd).

]
\

For value and default parameters, a dpd is not formed, but
the parameter is evaluated and the result stored within the
procedure instance. The exceptions to this rule are switches,
labels and procedures which get a .dpd and are handled (from

‘the compiler's point of view) as name parameters,

The contents of the different possible dpd are given below
using the following notation:



. s e e

tha thunk address

dp driver pointer

ra. relative address

oa object address

’swa syitch address

la label address

PP prototype péinter' :
ca constant address :

Possible dpds are:

<type> constant: | é ?ca

simple <type> variable: ra,oa or pp,dp
<type> sﬁbscripted variable or

<type> remote variable or \

<type> expression: tha,dp

switch name or default swa,dp
designational expression: tha,dp
label name, value label: " - la,dp
procedure name or default " pp,dp
array default no dpd. A copy of array

descriptor.
I

Any reference dpd must contain or give access to the
identification (prototype pointer) of the class qualifying
the actual parameter. '



