EXPRESSIONS

Procedure call

When a procedure is called, we must distinguish between
fbur kinds of procedures: non-formql-non-Virtuai,
virtual, formal and external. Their characteristics
are as follows:

For a non-formal-non-virtual procedure, the compiler
may check that the number of actual parameters is
correct and that the actual parameters are compatible
with the formal parameters. Value parameters may be
transmitted by compiler, generated (in—line)'coding.

For a virtual procedure, these checks must be made at
runtime. The compiler does not know which parameters
are called by value. 1In fact, the compiler does not
even know that a matching virtual procedure exists.
The access to the procedure must be through the proto-
type of the object where the procedure is local.

For a formal procedure, much of the same chegking must
be done as for virtual procedures.

For an external procedure, the checking of ref parameters
may be simplified as compared to formal procedures, since
ref parameters to an external procedure may only be
qualified by a system class.™)

In the formal description, a ref (driver) parameter has
been used instead of a display index because it is easier

~to understand. The use of a display index would be

simpler in an implementation.

We have, when calling a non-formal (non-virtual or virtual)

procedure, P, three different cases:

*))
This point is currently being clarified by the SIMULA

Standards Group.

P is normal, i.e. its name 1is statically visible without

connection. In this case, only one driver is required.

The static link (drp) of this driver is found in DDISPLAY (bl)

at the level of the block where P is declared.

P is connected, i.e. its name has become visible through

a connection. Two drivers are required. The first

driver is an ordinary procedure driver with a static

1ink to the other extra driver. For the second driver

con is true, pex and drex are none, objJ is found in DISPILAY
(blc) where blc is the level of the connection block where
the object in which P is declared is connected, and drp

is found in DDISPLAY (blc).cdrp where blc is defined as
above, or alternatively as DISPLAY[bld-1] .MDP where bld

is block level of class declaration.

P is remote, i.e. accessed by remote referencing, and the
class of the element expression, X, preceding the dot pre-
ceding P is C (P is thus local to C). X must be supplied
by the compiler as a parameter to the runtime system.

Two drivers are required: an ordinary procedure driver
with a static link (drp) to the extra driver. The extra
driver has a static link (drp) found in ddisplay (blc)
where blc is the apparent block level of the class C, con

is true, pex and drex are none and obj is X.

e e - . — S . — T D S D fu M Sv% G S e —— - o

A procedure call P(Al,.....,An) is assumed to create the

following in-line coding in the compiled program:

A call on a call procedure runtime routine to generate
the date storage for the procedure, insert PP, create
necessary drivers and prepare to accept value parameters
and name parameter descriptors through in-line coding.

In-line coding to compute and store dynamic parameter
descriptors and value parameters.

- 57 =~

During the value parameter evaluation, the procedure itself
has two drivers.

The first is an ordinary procedure driver, the second is a
thunk driver which is deleted when all value parameters

have been computed and stored,

If the number of value parameters is zero, the second driver
is not created.

The contents of the thunk driver are as follows:

obj pointer to B.I. B where the procedure is called
drp equal to drp of B

pex none

drex pointer to the procedﬁre driver

acs none

md ~ false

con and cdrp are inherited from the driver of B

When all parameters and descriptors have been evaluated,
the second driver is discarded and display is updated to

point to the static environment of the procedure.

The compiler generated coding for the procedure is entered.
In this coding, the local declarations are performed and
the procedure body entered.

The parameter "acs" is used to indicate that an accumulator
stack may be present. The corresponding actual parameter
will be either none or a generating expression. This does
not imply that the accumulator stack need be saved with
in-line coding. In an implementation, acs will probably

be a description of the accumulator stack, and the save

function is performed by the runtime system.

procedure ENTER;
begin ref (driver) y;

y = CD;

CD :- CD.drex;

CD.pex :~ exit;

deletenotice (y)q

update display;

go to CD.obj.PP.prefix[0]. declare;

end ENTER; ,

Note: procedure prototype have prefix [0] == prototype"
of procedure. '

A call on the subroutine "ENTER" is compiled at. the end
of the in-line coding for parameter transmission to

procedures and classes.

procedure ENTPROC;
begin ref (driver) y;
CD.obj.MDP :- CD; ‘
if CD.obj.PP.nrp = 0 then begin update display;

go to CD.obj.PP.declare
end;

y:- CD.drex;

CD :~- new driver (y.obj,y.drp,none,CD,none,false,

y.level);
CDh.con := y.éon; CD.cdrp :- y.cdrp;
DDISPLAY[y.levell :- CD;
go to CD.drex.pexj;
end ENTPROC;

If the procedure has no parameters, "ENTPROC" will cause

the in-line coding for declarations local to the procedure
to be entered. This in-line coding continues with the first
statement of the body. ‘

-59..

procedure CPR (p,acs);
ref (prototype) p; ref (object) acs;
begin

comment call procedure;
CD :- new driver (new object(p),DDISPLAY[p.level-l],

exit,CD,acs,true,p.level):
ENTPROC ;
end CPR;

‘A driver for the procedure is created and the procedure is
entered using "entproc" (described above).
?
procedure CCP (p,c,acs);
ref (prototype) p; ref (object) acs;
ref (driver) c;
begin ref (driver) x;
comment call connected procedure;
x :~ new driver(c.obj,c.cdrp,none,none,none,false,
p.level-1l);

X.con := true;

CD :- new driver(new object(p),x,exit,CD,acs,true,
. | p.level);
- CD.dot := true; ENTPROC;

end CCP;

CCP is used when a procedure belonging to a connected object
is called. It creates a substitute driver for the connected
object, the driver for the procedure and the procedure uni-

verse, and enters the procedure using "ENTPROC" (described
above). '

procedure CDP (p,c,slc,acs); ,
ref (prototype) p; ref (object) c,acs;
ref (driver)slc;
begin ref (driver) x;

comment call dot procedure;

—60.—

-

X := new driver (c,slc,none,none,none,false,p.level~1l);

- X.Ccon := true;
CD :- new driver (new object(p),x,exit,CD,acs,true,

p.level);
CD.dot := true; -

ENTPROC?
end CDP;

A substitute driver is created for the object where the
procedure is declared.

A driver for the procedure is created with a static link
to this substitute driver. Dot of the procedure driver is
true to indicate that both dynamic and static links must
be followed by the store collapse, and that the substitute
driver should be deleted at procedure exit.

The procedure is entered through ENTPROC.

- — s o o v m vy oy

The number of parameters and their types are not checked
by the compiler for a call on a virtual procedure. The
checking is left to the runtime system subroutines,

A virtual procedure, V, when called, may be of either of

the cases mentioned for non-formal -non-virtual procedures.
A call on a virtual procedure V(Al,.....,An), is assumed
to create the following in-line coding in the compiled

program:

A call on a "call virtual procedure" runtime‘routine to:

Generate the data storage for the procedure..
Insert PP.

Create necessary drivers.

Check parameter numbers and types.

Compute value parameters.

Insert name parameter descriptors.

EN R NG I S VS I S I A
L]

Enter the procedure (starting with local declarations).

2. The number of parameters
3. Static parameter descriptor (spd) for each parameter.

Rrocedure entvirt (p,dr,dot,acs);

ref (prototype) p; ref (driver) dr;

ref (object) acs; Boolean dot;

begin check number of parameters etc; ‘
CD :- new driver (new object(p),dr,exit,CD,acs,true,

p.level);

CD.dot := dot;
CD.obj.MDP :- CD;
store descriptors for name parameters;
store value parameters; |
update display;
go to p.declare

end entvirt;

Erocedﬁre Ccvp (cl,index,acs){

integer index;

ref (object) acs; ref (driver) cl;

begin ref (prototype) p,q;
p :~ cl.obj.PP;
q :- p.progaddr (index) qua prototype;
if g == none then error ("cvp",1l);
entvirt (q,cl,false,acs)

end CVP;

procedure CCVP(c,index,acs);
integer index;
ref (object) acs; ref (driver) c;
begin ref (prototype) p,q;
:- c.0bj.PP; ,
:~ p.progaddr (index) qua prototype;
q == none then error ("ccvp",l);

Q l+» Qo
H

¢t~ new driver (c.obj,c.cdrp,none,none,none,
false, p.level);

entvirt (g,c,true,acs)
end CCVP;

7.2

_62..

procedure CDVP(c,ihdex,slg,acs);
integer index;
ref (object) c,acs; ref (driver) slc;
begin»ggg (prototype) p;
P := c.PP.progaddr (index) gqua prototype;
if p == none then error ("CDVP",1);

slc :~ new driver (c,slc,none, none, none,

false,p.level-1);
slc.con := true; ’
entvirt (p,slc,true,acs);
end CDVP; |

A formal procedure may only be normal, not remote or connected.

The dynamic parameter descriptor for an actual procedure or
<type> procedure corresponding to a formal parameter
specified as procedure or <type> procedure must contain the
following information:

Pointer to the prototype for the procedure. ,
Pointer 'to driver of object where procedure is declared.
The number of parameters and their type given in the call
will be matched against the parameter requirements of the
procedure parameters.

Type differences will be tolerated only for value pa:ameters
with type compatible with the declared type.

Arithmetic_and_Boglean_expressions

- due ma . A An e S e BN 5% e e . - - -

These follow the rules as defined in ALGOL 60 with the
exception of <factor>4<term> which is of type real.

7.3

7.3.1

i L i A b it £ e

-63_

The qualification of a refeorence may be divided into two
parts: a static qualification (the class) and a dynamic
qualification (the object instance where the class is local).

The dynamic qualification is not in general known at

compile time. The need to check the dynamic qualification
would be a heavy burden on the runtime system in the general
case, |

The implementation is greatly simplified by the following
restrictions in the Common Base:

Quantities declared within a class containing local class
declarations may not be accessed by dot-notation.

Synonomous classes whose apparent block levels are different,
are assumed by the compiler to have different dynamic
qualifications.

These two restrictions imply that the dynamic gqualification
may be completely checked at compile time, except in the
case of ref parameters to a formal or virtual procedure.

In these exceptional cases, the dynamic qualification must
be checked at procedure entry time.

The check is performed by comparing BL prior to entry

of the procedure with BLF, where BL is the apparent block
level of the qualification of the actual parameter and
BLF the one for the formal parameter.

In addition, the qualification compatibility check normally
performed at compile time must be performed at runtime when
a formal or virtual procedure is called. The check ensures
that one of the qualifying classes includes the other.

7.3.2

—64_

It follows that the static qualification as well as the
associated apparent block level for each actual and formal
parameter must be available to the runtime system at the

time of entering a formal or virtual procedure.
The preceding paragraphs also apply for ref array parameters.

In the following four cases, class membership of a reference
value must be compared and checked against the static
qualification of a variable:

Explicit reference assignment, case 2.

Reference parameter transmission to non~formal, non-virtual
procedures in default mode, case 2. o

Name parameter to the left of denotes. This check is
required even in éase l, since the qualification of the
actual parameter may be a subclass of the qualification of
the formal one. Since the qualification of the actual
parameter is not known at compile time, this check belongs

in a system soubroutine which interprets the store operation
(SFP).

Name parameter in reference expression. A check similar

to that of 3 above must be performed in the subroutine which
interprets the load operation (LFP) because the formal
qualification may be a subclass of the actual one.

The generafing reference new C(Al,....,An) 1is assumed
to create the following in-line coding in the compiled
program: 7

A call on a "begin class" procedure to generate the C
object, create the necessary drivers and prepare to accept
parameters as in-line coding.

.-65—

In-line ceding to compute parameters and store the values
in the C cbject.

A call on the subroutine ENTER which will enter the coding
for declarations in the outermost prefix,

During the parameter evaluation, the object has two drivers:
The first one is the ordinary driver for an attached object,
the second is a thunk driver which is deleted when all

parameters have been computed and stored.

If the number of parameters is zero, the second driver need
not be created.

The contents of the thunk driver are as follows:

obj pointer to block B where generating expression
_ is found.

drp equal to static link (drp) of block b.

pex none.

drex 'pointer to object driver.

acs none.

md false

When all parameters have been evaluated, the second driver
is discarded and display is updated. The declarations local
to the class are then performed starting with the outermost
prefix. '

The program of the outermost prefix is then entered.

The driver for the object is given DISPLAY (BL) .mdp

as static link (drp) where BL is either the level of the
block containing the declaration of the class C (normal
case) or the level of the connection of the class D
where the class C is declared.

-— ‘66 -

Note:
Since the class or block where C is declared must have
local class declarations (C is one of these), it must

always have a master driver.

The procedures in the formal description relating to

generating references are:

BC ' begin class
BCR begin class return
ECB end class body |

In addition, the procedures "detach", "resume" and "attach"”

may be considered related to generating references.
ECB has been previously described.

procedure BC (x,slx,acs); _ |
ref (prototype) x; ref (object)islx;
ref (object) acs;
begin ref (driver) y; ref (prototype) q;
comment begin class;
y :~ new driver (new object (x),slx.MDP,gﬁig,CD,acs,
true,x.level);
y.ob := true; y.obj.MDP :- y;
if x.nrp # 0 then
begin y := new driver (CD.obj,CD.drp,none,y,none,

false,CD.level);
y.con := CD.conj;
y.cdrp :- CD.cdrp;
CD :~ y;
DDISPLAY[CD.level] :- CD;
go to exit
end else CD :- y;
update display;
go to CD.obj.PP.prefix[0].declare;
end BC;

..67..
ENTER has been described previously (section 7.2.1).

BC is entered to create data storage for the instance
of the class declaration, make necessary drivers, transfer

parameters and enter local declarations of the outermost
prefix. '

The parameters have been checked by the compiler;, and they
are stored into the class body by in-line coding in the
compiled program. A temporary (thunk) driver is used during
this evaluation. Return to the runtime system after the
parameter evaluation is by the procedure ENTER.

DISPLAY is updated, and the declaration coding in outermost
prefix is entered. '

The coding for declarations in each prefix will end by
a call on BCR, for a prefixed block BPBR.

procedure BCR (q); integer q;
begin ref (prototype) x,y;
comment begin class return;
X := cd.obj.PP; |
Yy := x.prefix[g+l]; i
if y =/= none then go to y.declare;
go _to x.prefix[0].statements;
end BCR;

The subroutine BCR is used to locate the next class where
declarations should be performed. When declarations'in
the innermost class have been processed, the outermost
prefix is located and the first statement entered.

\

DISPLAY is updated prior to entry of the declaration part.

Return from declarations in a prefixed block is through
BPBR. .

O e S s S et e O T St Ve e e Wt B M S W oo e e W e s o man

An instantaneous qualification (X qua C) will always result
in a runtime check. It is verified that X is of class C
or a subclass of C.

The case of X being none is handled by compiler generated
coding as usual.

The subroutine CIQ (check instantaneous qualification) is
used to check the validity of the instantaneous qualification.

The subroutine either gives an errormessage or acts as a
ref (C) procedure whose value is X.

ref procedure CIQ(x,c);

ref (object) x; ref (prototype) c;
begin ref (prototype) d;
d :- x.PP;
if d.plev < c.plev then error ("ciq",l);'
if d.prefix[c.plev] =/= c then error ("cig",2);
CIQ :- x
end CcIQ;

Possible error: the object X is not of class C or a subclass
of C.

The subroutine will conceptually follow the prefix chain in

the prototypes starting on the prototype for the class of X.

If the prototype for the class C is not found during this scan,
a runtime error condition exists.

The procedure value is a reference to the block instance,

Character expressions are in the language only as character

constants, character variables and character procedures,
The character procedure "char" is system defined.

The character procedure "getchar" is defined local to the
type text,

Text expressions are in the language as text constants,
text variables and text procedures.

The text procedures "copy" and "blanks" are system defined.

The text procedures, "sub", "main" and "strip" are attributes
of any text. '

