Remote accessing

An attribute of an object is identified completely

by the ‘following items of information:
1) the object,

2) a class which is outer to or equal to that of

the object, and

3) an attribute identifier defined in that class

or in any class belonging to its prefix sequence.

Item 2 is textually defined for any attribute identifi-
cation. The prefix level of the class is called the

"access level" of the attribute identification.

Consider an attribute identification whose item 2 is
the class C. 1Its attribute identifier, item 3, is
subjected to the same identifier substitutions as those
which would be applied to an uncommitte | occurrence of
that identifier within the main part of C, at the time
of concatenation. In that way, name cgnilicts between
attributes declared at different prefix levels of

an object are resolved by selecting the one defined

at the innermost prefix level not inner to the access
level of the attribute identification.

An uncommitted occurrence within a given object of thé
identifier of an attribute of the object is itself a
complete attribute identification. In this case items
1 and 2 are implicitly defined, as respectively the
given object and the class associated with the prefix

level of the identifier occurrence.

If such an identifier occurrence is located in the body
of a procedure declaration (which is part of the object),

then, for any dynamic instance of the procedure, the

...54._

occurrence serves to identity an attribute of the given
object, regardless of the context in which the procedure
was invoked.

Remote accessing of attributes, i.e. access from
outside the object, is either through the mechanism

of "remote identifiers" ("dot notation") or through
"connection". The former is an adaptation of a
technique proposed in [3], the latter corresponds to

the connection mechanism of SIMULA I [2].

A text reference is (itself) a compound structure in
the sense that it has attributes accessible through

the dot notation.

Remote identifiers

Syntax

<attribute identifier> ::= <identifier>
<remote identifier> ::=
<simple object expression>.<attribute identifier> |
<simple text expression>.<attribute identifier>
<identifier 1> ::= <identifier>|
<remote identifier>
<variable identifier 1> ::= <identifier 1>
<simple variable 1> ::= <variable identifier 1>
<array identifier 1> ::= <identifier 1>
<variable> ::= <gimple variable 1> |
<array identifier 1>[<subscript list>]
<procedure identifier 1> ::= <identifier 1>
<function designator>::=
<procedure identifier l><actual parameter part>
<procedure statement> ::=
<procedure identifier l1l><actual parameter part>
<actual parameter> ::= <expression>]
<array identifier 1>]
<switch identifier> |

<procedure identifier 1>

.1,

Semantics

Let X be a simple object expression qualified by the
class E, and let A be an appropriate attribute
identifier. Then the remote identifier "X.A", if valid,
is an attribute identification whose item 1 is the
value X and.whose item 2 is C.

The remote identifier X.A is valid if the following

conditions are satisfied:

1) The value X is different from none.

2) The object referenced by X has no class attribute
declared at any prefix level equal or outer to

that of C.

Condition 1 corresponds to a run time check which causes

a run-time error if the value of X is none.

Condition 2 is an ad hoc rule intended to simplify

the language and its implementations.

A remote identifier of the form

<simple text expression>.<attribute identifier>
identifies an attribute of the text reference obtained
by evaluating the simple tex! expression, provided

that the attribute identifier is one of the procedure

identifiers listed in section 10.1.

Examgle 1l:

Let G5 and G10 be variables declared and initialized
as in example 1 of section 6.1.2.2. Then an expression
of the form

G5.integral(.....) or GlO0.integral(.....)

_56__
is an approximation to a definite integral obtained

by applying respectively a 5 point or a 10 point

Gauss formula.

Example 2:

Let Pl and P2 be variables declared and initialized
as in example 2 of section 6.1.2.2. Then the value
of the expression '

Fl.plus (P2)

is a new "paint” object which represents the vector

sum of Pl and P2. The value of the expression
Pl qua polar.plus (P2)

is a new "polar” object representing the same vector

SuUMm.

Connection

Syntax

i

<connection block 1> <statement>

i

<connection block 2>

<statement>
<when clause> ::=
when <class identifier>do<connection block 1>
<otherwise clause> ::= <empty>|
otherwise<statement>
<connection part> ::= <when clause>|
<connection part><when clause>
<connection statement> ::=
inspect <object expression>
<connection part><otherwise clause> |
inspect <object expression> do
<connection block 2><otherwise clause> |

<label>:<connection statement>

7.2.

- 57 =

A connection block may itself be a connection statement,
which, in that case, is the largest possible connection

%

statement.

£

Semantics

The purpose of the connection mechanism is to provide
implicit definitions of the above items 1 and 2 for
certain attribute identifications within connection
blocks. ’

The execution of a connection statement may be described

as follows:

1) The object expression of the connection statement

is evaluated. Let its value be X.

2) 1If when-clauses are present they are considered one
after another. If X is an object belonging to a
class equal or inner to the one identified by a when-
clause, the connection block 1 of this when-clause
is executed, and subsequent when-clauses are skipped.

Otherwise the when-clause is skipped.

3) If a connection block 2 is present it is executed,
except if X is none in which case the connection

block is skipped.

4) The statement of an otherwise clause is executed
if X is none, or .if X is an object not belonging
to a class included in the one identified by any

when-clause. Otherwise it is skipped.

A statement which is a connection block 1 or a
connection block 2 acts as a block, whether it takes
the form of a block or not. It further acts as if

enclosed in a second fictitious block, called a

...58_

"connection block"., During the execution of a connection
block the object X is said to be "connected". A
connection block has an associated "block qualification”,
which'is the preceding class identifier for a connection
block 1 and the qualification of the preceding object
expression for a connection block 2.

Let the block gualification of a given connection block
be C and let A be an attribute identifier defined at
any prefix level of C. Then any uncommitted occurrence
of A within the connection block is given the local
significance of being an attribute identification. 1Its
item 1 is the connected object, its item 2 is the block

qualification C,

It follows that a connection block acts as if its local
quantities are those attributes of the connected object
which are defined at prefix levels outer to and including
that of C. (Name conflicts between attributes defined
at different prefix levels of C are resolved by

selecting the one defined at the innermost prefix level.)

Example:

Let "Gauss” be the class declared in the example of
section 2.2. Then within the connection block 2 of

the connection statement

inspect new Gauss(5) do begin end

a procedure "integral"” is available for numeric

integration by means of a 5 point Gauss fornula.

